Advertisement

Long-Term Activity Dynamics of Single Neurons and Networks

  • Sebastian Reinartz
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 22)

Abstract

The firing rate of neuronal spiking in vitro and in vivo significantly varies over extended timescales, characterized by long-memory processes and complex statistics, and appears in spontaneous as well as evoked activity upon repeated stimulus presentation. These variations in response features and their statistics, in face of repeated instances of a given physical input, are ubiquitous in all levels of brain-behavior organization. They are expressed in single neuron and network response variability but even appear in variations of subjective percepts or psychophysical choices and have been described as stemming from history-dependent, stochastic, or rate-determined processes.

But what are the sources underlying these temporally rich variations in firing rate? Are they determined by interactions of the nervous system as a whole, or do isolated, single neurons or neuronal networks already express these fluctuations independent of higher levels? These questions motivated the application of a method that allows for controlled and specific long-term activation of a single neuron or neuronal network, isolated from higher levels of cortical organization.

This chapter highlights the research done in cultured cortical networks to study (1) the inherent non-stationarity of neuronal network activity, (2) single neuron response fluctuations and underlying processes, and (3) the interface layer between network and single cell, the non-stationary efficacy of the ensemble of synapses impinging onto the observed neuron.

Keywords

Response fluctuations Long-memory processes Self-organized criticality Single neuron Direct response Synaptic dynamics 

Notes

Acknowledgments

Memories of ongoing discussions in the lab of Shimon Marom with Avner Wallach, Asaf Gal, Hanna Keren, Netta Haroush, and Dani Dagan helped assembling this overview. I further thank Iacopo Hachen, Artoghrul Alishbayli, and Luciano Paz for help in reviewing and discussing the manuscript. The financial support of the Human Frontier Science Program (http://www.hfsp.org; project RGP0015/2013) and the European Research Council advanced grant CONCEPT (http://erc.europa.eu; project 294498) is kindly acknowledged.

References

  1. Abeles, M. (1991). Corticonics: Neural circuits of cerebral cortex. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Aertsen, A. M., & Johannesma, P. I. (1981). A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biological Cybernetics, 42, 145–156.CrossRefGoogle Scholar
  3. Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science, 273, 1868–1871.CrossRefPubMedGoogle Scholar
  4. Azouz, R., & Gray, C. M. (1999). Cellular mechanism contributing to response variability of cortical neurons in vivo. The Journal of Neuroscience, 19, 2209–2223.CrossRefGoogle Scholar
  5. Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73, 5–59.CrossRefGoogle Scholar
  6. Bak, P. (1997). How nature works. Oxford: Oxford University Press.Google Scholar
  7. Bakkum, D. J., Chao, Z. C., & Potter, S. M. (2008). Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks. PLoS One, 3, e2088.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. The Journal of Neuroscience, 23, 11167–11177.CrossRefGoogle Scholar
  9. Beran, J. (1994). Statistics for long-memory processes. New York: Chapman & Hall/CRC.Google Scholar
  10. Berdondini, L., van der Wal, P. D., Guenat, O., de Rooij, N. F., Koudelka-Hep, M., Seitz, P., et al. (2005). High-density electrode array for imaging in vitro electrophysiological activity. Biosensors and Bioelectronics, 21, 167–174.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bonifazi, P., Ruaro, M. E., & Torre, V. (2005). Statistical properties of information processing in neuronal networks. The European Journal of Neuroscience, 22, 2953–2964.CrossRefGoogle Scholar
  12. Braun, A., Urai, A. E., & Donner, T. H. (2018). Adaptive history biases result from confidence-weighted accumulation of past choices. The Journal of Neuroscience, 38, 2418–2429.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brenner, N., Bialek, W., & de Ruyter van Steveninck, R. R. (2000). Adaptive rescaling maximizes information transmission. Neuron, 26, 695–702.CrossRefGoogle Scholar
  14. Canepari, M., Bove, M., Maeda, E., Cappello, M., & Kawana, A. (1997). Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biological Cybernetics, 77, 153–162.CrossRefGoogle Scholar
  15. Chen, X., Rochefort, N. L., Sakmann, B., & Konnerth, A. (2013). Reactivation of the same synapses during spontaneous up states and sensory stimuli. Cell Reports, 4, 31–39.CrossRefGoogle Scholar
  16. Chialvo, D. (2010). Emergent complex neural dynamics. Nature Physics, 6(10), 744–750.CrossRefGoogle Scholar
  17. Chiappalone, M., Bove, M., Vato, A., Tedesco, M., & Martinoia, S. (2006). Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research, 1093, 41–53.CrossRefGoogle Scholar
  18. Chiappalone, M., Vato, A., Berdondini, L., Koudelka-Hep, M., & Martinoia, S. (2007). Network dynamics and synchronous activity in cultured cortical neurons. International Journal of Neural Systems, 17, 87–103.CrossRefGoogle Scholar
  19. Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., et al. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13, 369–378.CrossRefPubMedPubMedCentralGoogle Scholar
  20. de Polavieja, G. G., Harsch, A., Kleppe, I., Robinson, H. P. C., & Juusola, M. (2005). Stimulus history reliably shapes action potential waveforms of cortical neurons. The Journal of Neuroscience, 25, 5657–5665.CrossRefGoogle Scholar
  21. Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. The Journal of Neuroscience, 19, 4595–4608.CrossRefPubMedPubMedCentralGoogle Scholar
  22. El Hady, A., Afshar, G., Bröking, K., Schlüter, O. M., Geisel, T., Stühmer, W., et al. (2013). Optogenetic stimulation effectively enhances intrinsically generated network synchrony. Front Neural Circuits, 7, 167.PubMedPubMedCentralGoogle Scholar
  23. Ellerkmann, R. K., Riazanski, V., Elger, C. E., Urban, B. W., & Beck, H. (2001). Slow recovery from inactivation regulates the availability of voltage-dependent sodium channels in hippocampal granule cells, hilar neurons and basket cells. The Journal of Physiology, 532, 385–397.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Esposti, F., Signorini, M. G., Potter, S. M., & Cerutti, S. (2009). Statistical long-term correlations in dissociated cortical neuron recordings. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 364–369.CrossRefGoogle Scholar
  25. Eytan, D., & Marom, S. (2006). Dynamics and effective topology underlying synchronization in networks of cortical neurons. The Journal of Neuroscience, 26, 8465–8476.CrossRefGoogle Scholar
  26. Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9, 292–303.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fortune, E. S., & Rose, G. J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in Neurosciences, 24, 381–385.CrossRefGoogle Scholar
  28. Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., et al. (2010). Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE Journal of Solid-State Circuits, 45, 467–482.CrossRefGoogle Scholar
  29. Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology, 27(4), 590–595.CrossRefGoogle Scholar
  30. Fründ, I., Wichmann, F. A., & Macke, J. H. (2014). Quantifying the effect of intertrial dependence on perceptual decisions. Journal of Vision, 14(7), 9.CrossRefGoogle Scholar
  31. Gal, A., Eytan, D., Wallach, A., Sandler, M., Schiller, J., & Marom, S. (2010). Dynamics of excitability over extended timescales in cultured cortical neurons. The Journal of Neuroscience, 30, 16332–16342.CrossRefGoogle Scholar
  32. Gal, A., & Marom, S. (2013a). Self-organized criticality in single-neuron excitability. Physical Review E, 88, 062717.CrossRefGoogle Scholar
  33. Gal, A., & Marom, S. (2013b). Entrainment of the intrinsic dynamics of single isolated neurons by natural-like input. The Journal of Neuroscience, 33(18), 7912–7918.CrossRefGoogle Scholar
  34. Garcia-Lazaro, J. A., Ahmed, B., & Schnupp, J. W. (2006). Tuning to natural stimulus dynamics in primary auditory cortex. Current Biology, 16, 264–271.CrossRefGoogle Scholar
  35. Gilboa, G., Chen, R., & Brenner, N. (2005). History-dependent multiple-timescale dynamics in a single-neuron model. The Journal of Neuroscience, 25, 6479–6489.CrossRefGoogle Scholar
  36. Gilden, D. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108(1), 33–56.CrossRefGoogle Scholar
  37. Gilden, D., Thornton, T., & Mallon, M. (1995). 1/f noise in human cognition. Science, 267(5205), 1837.CrossRefGoogle Scholar
  38. Golshani, P., Gonçalves, J. T., Khoshkhoo, S., Mostany, R., Smirnakis, S., & Portera-Cailliau, C. (2009). Internally mediated developmental desynchronization of neocortical network activity. The Journal of Neuroscience, 29, 10890–10899.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gustafsson, B., & Jankowska, E. (1976). Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. The Journal of Physiology, 258(1), 33–61.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Haroush, N., & Marom, S. (2015). Slow dynamics in features of synchronized neural network responses. Frontiers in Computational Neuroscience, 9, 40.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Harris, K. D., & Thiele, A. (2011). Cortical state and attention. Nature Reviews. Neuroscience, 12, 509–523.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Harsch, A., & Robinson, H. P. (2000). Postsynaptic variability of firing in rat cortical neurons: The roles of input synchronization and synaptic nmda receptor conductance. The Journal of Neuroscience, 20, 6181–6192.CrossRefGoogle Scholar
  43. Henze, D. A., & Buzsaki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience, 105, 121–130.CrossRefGoogle Scholar
  44. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Huettner, J. E., & Baughman, R. W. (1986). Primary culture of identified neurons from the visual cortex of postnatal rats. The Journal of Neuroscience, 6(10), 3044–3060.CrossRefGoogle Scholar
  46. Jensen, H. J. (1998). Self-organized criticality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Jia, A., Rochefort, N. L., Chen, X., & Konnerth, A. (2010). Dendritic organization of sensory input to cortical neurons in vivo. Nature, 464, 1307–1312.CrossRefGoogle Scholar
  48. Jimbo, Y., Kawana, A., Parodi, P., & Torre, V. (2000). The dynamics of a neuronal culture of dissociated cortical neurons of neonatal rats. Biological Cybernetics, 83, 1–20.CrossRefGoogle Scholar
  49. Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P., & Kawana, A. (1996). Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters, 206, 109–112.CrossRefGoogle Scholar
  50. Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.CrossRefGoogle Scholar
  51. Kaufman, M., Corner, M. A., & Ziv, N. E. (2012). Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling. PLoS ONE, 7, e40980.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kaufman, M., Reinartz, S., & Ziv, N. E. (2014). Adaptation to prolonged neuromodulation in cortical cultures: An invariable return to network synchrony. BMC Biology, 12, 83.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kayser, C., Logothetis, N. K., & Panzeri, S. (2010). Millisecond encoding precision of auditory cortex neurons. Proceedings of the National Academy of Sciences of the United States of America, 107, 16976–16981.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Keren, H., & Marom, S. (2014). Controlling neural network responsiveness: Tradeoffs and constraints. Frontiers Neuroengineering, 7, 11.Google Scholar
  55. Kriegstein, A. R., & Dichter, M. A. (1983). Morphological classification of rat cortical neurons in cell culture. The Journal of Neuroscience, 3, 1634–1647.CrossRefGoogle Scholar
  56. Laughlin, S. B. (1981). A simple coding procedure enhances a neuron’s information capacity. Zeitschrift für Naturforschung, 36, 910–912.CrossRefGoogle Scholar
  57. Levina, A., Herrmann, J. M., & Geisel, T. (2007). Dynamical synapses causing self-organized criticality in neural networks. Nature Physics, 3(12), 857–860.CrossRefGoogle Scholar
  58. Liebovitch, L. S., Fischbarg, J., Koniarek, J. P., Todorova, I., & Wang, M. (1987). Fractal model of ion-channel kinetics. Biochimica et Biophysica Acta, 896, 173–180.CrossRefGoogle Scholar
  59. Lowen, S., Liebovitch, L., & White, J. (1999). Fractal ion-channel behavior generates fractal firing patterns in neuronal models. Physical Review E, 59, 5970–5980.CrossRefGoogle Scholar
  60. Lowen, S. B., Cash, S. S., Poo, M., & Teich, M. C. (1997). Quantal neurotransmitter secretion rate exhibits fractal behavior. The Journal of Neuroscience, 17, 5666–5677.CrossRefGoogle Scholar
  61. Lowen, S. B., & Teich, M. C. (1996). The periodogram and allan variance reveal fractal exponents greater than unity in auditory-nerve spike trains. The Journal of the Acoustical Society of America, 99, 3585–3591.CrossRefGoogle Scholar
  62. Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.CrossRefGoogle Scholar
  63. Markram, H., Gupta, A., Uziel, A., Wang, Y., & Tsodyks, M. (1998). Information processing with frequency-dependent synaptic connections. Neurobiology of Learning and Memory, 70(1-2), 101–112.CrossRefGoogle Scholar
  64. Marom, S. (2009). Adaptive transition rates in excitable membranes. Frontiers in Computational Neuroscience, 3, 2.PubMedPubMedCentralGoogle Scholar
  65. Marom, S. (2010). Neural timescales or lack thereof. Progress in Neurobiology, 90, 16–28.CrossRefGoogle Scholar
  66. Marom, S., & Shahaf, G. (2002). Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Quarterly Reviews of Biophysics, 35, 63–87.CrossRefGoogle Scholar
  67. Marom, S., & Wallach, A. (2011). Relational dynamics in perception: Impacts on trial-to-trial variation. Frontiers in Computational Neuroscience, 5, 16.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Masquelier, T. (2013). Neural variability, or lack thereof. Frontiers in Computational Neuroscience, 7, 7.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2, e439.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Milotti, E. (2002). 1/f noise: A pedagogical review. Arxiv: Physics 0204033v1.Google Scholar
  71. Minerbi, A., Kahana, R., Goldfeld, L., Kaufman, M., Marom, S., & Ziv, N. E. (2009). Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity. PLoS Biology, 7, e1000136.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Montévil, M., Mossio, M., Pocheville, A., & Longo, G. (2016). Theoretical principles for biology: Variation. Progress in Biophysics and Molecular Biology, 122(1), 36–50.CrossRefGoogle Scholar
  73. Monto, S., Palva, S., Voipio, J., & Palva, J. (2008). Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. The Journal of Neuroscience, 28(33), 8268.CrossRefGoogle Scholar
  74. Muramoto, K., Ichikawa, M., Kawahara, M., Kobayashi, K., & Kuroda, Y. (1993). Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks. Neuroscience Letters, 163(2), 163–165.CrossRefGoogle Scholar
  75. Neale, E. A., Oertel, W. H., Bowers, L. M., & Weise, V. K. (1983). Glutamate decarboxylase immunoreactivity and gamma-[3H] aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex. The Journal of Neuroscience, 3(2), 376–382.CrossRefGoogle Scholar
  76. Newman, J. P., Fong, M. F., Millard, D. C., Whitmire, C. J., Stanley, G. B., & Potter, S. M. (2015). Optogenetic feedback control of neural activity. eLife, 4, e07192.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, A., Fried, I., et al. (2007). Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Current Biology, 17(15), 1275–1285.CrossRefGoogle Scholar
  78. Okujeni, S., Kandler, S., & Egert, U. (2017). Mesoscale architecture shapes initiation and richness of spontaneous network activity. The Journal of Neuroscience, 37, 3972–3987.CrossRefGoogle Scholar
  79. Panzeri, S., & Diamond, M. E. (2010). Information carried by population spike times in the whisker sensory cortex can be decoded without knowledge of stimulus time. Front Synaptic Neuroscience, 2, 17.Google Scholar
  80. Pasquale, V., Massobrio, P., Bologna, L. L., Chiappalone, M., & Martinoia, S. (2008). Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience, 153, 1354–1369.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Plenz, D., & Niebur, E. (Eds.). (2014). Criticality in neural systems. New York: Wiley.Google Scholar
  82. Plenz, D., & Thiagarajan, T. (2007). The organizing principles of neuronal avalanches: Cell assemblies in the cortex. Trends in Neurosciences, 30, 101–110.CrossRefGoogle Scholar
  83. Potter, S. M., & Demarse, T. B. (2001). A new approach to neural cell culture for long-term studies. Journal of Neuroscience Methods, 110, 17–24.CrossRefGoogle Scholar
  84. Pulizzi, R., Musumeci, G., Van den Haute, C., Van De Vijver, S., Baekelandt, V., & Giugliano, M. (2016). Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks. Scientific Reports, 6, e24701.CrossRefGoogle Scholar
  85. Reinartz, S., Biro, I., Gal, A., Giugliano, M., & Marom, S. (2014). Synaptic dynamics contribute to long-term single neuron response fluctuations. Front Neural Circuits, 8, 71.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Robinson, H. P., Kawahara, M., Jimbo, Y., Torimitsu, K., Kuroda, Y., & Kawana, A. (1993). Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons. Journal of Neurophysiology, 70, 1606–1616.CrossRefGoogle Scholar
  87. Rose, D., & Lowe, I. (1982). Dynamics of adaptation to contrast. Perception, 11(5), 505–528.CrossRefGoogle Scholar
  88. Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y., & Petersen, C. C. H. (2013). Membrane potential correlates of sensory perception in mouse barrel cortex. Nature Neuroscience, 16, 1671–1677.CrossRefGoogle Scholar
  89. Scarsi, F., Tessadori, J., Chiappalone, M., & Pasquale, V. (2017). Investigating the impact of electrical stimulation temporal distribution on cortical network responses. BMC Neuroscience, 18, 49.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Schneidman, E., Freedman, B., & Segev, I. (1998). Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation, 10, 1679–1703.CrossRefGoogle Scholar
  91. Scholl, B., Gao, X., & Wehr, M. (2010). Nonoverlapping sets of synapses drive on responses and off responses in auditory cortex. Neuron, 65(3), 412–421.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Segev, R., Benveniste, M., Hulata, E., Cohen, N., Palevski, A., Kapon, E., et al. (2002). Long term behavior of lithographically prepared in vitro neuronal networks. Physical Review Letters, 88, 118102.CrossRefGoogle Scholar
  93. Segev, R., Benveniste, M., Shapira, Y., & Ben-Jacob, E. (2003). Formation of electrically active clusterized neural networks. Physical Review Letters, 90, 168101.CrossRefGoogle Scholar
  94. Simoncelli, E. P. (2003). Vision and the statistics of the visual environment. Current Opinion in Neurobiology, 13, 144–149.CrossRefGoogle Scholar
  95. Soriano, J., Rodríguez Martínez, M., Tlusty, T., & Moses, E. (2008). Development of input connections in neural cultures. Proceedings of the National Academy of Sciences of the United States of America, 105, 13758–13763.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Steriade, M., Nuñez, A., & Amzica, F. (1993). Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The Journal of Neuroscience, 13, 3266–3283.CrossRefGoogle Scholar
  97. Tehovnik, E. J., Tolias, A. S., Sultan, F., Slocum, W. M., & Logothetis, N. K. (2006). Direct and indirect activation of cortical neurons by electrical microstimulation. Journal of Neurophysiology, 96(2), 512–521.CrossRefGoogle Scholar
  98. Teich, M. (1989). Fractal character of the auditory neural spike train. IEEE Transactions on Biomedical Engineering, 36(1), 150–160.CrossRefGoogle Scholar
  99. Tetzlaff, C., Okujeni, S., Egert, U., Worgotter, F., & Butz, M. (2010). Self-organized criticality in developing neuronal networks. PLoS Computational Biology, 6, e1001013.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Thomson, A. M. (1997). Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. The Journal of Physiology, 502(Pt 1), 131–147.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tiesinga, P., Fellous, J. M., & Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews. Neuroscience, 9, 97–107.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Toib, A., Lyakhov, V., & Marom, S. (1998). Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na channels. The Journal of Neuroscience, 18, 1893–1903.CrossRefGoogle Scholar
  103. Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135(3), 422–435.CrossRefPubMedPubMedCentralGoogle Scholar
  104. van Huizen, F., Romijn, H. J., & Habets, A. M. (1985). Synaptogenesis in rat cerebral cortex cultures is affected during chronic blockade of spontaneous bioelectric activity by tetrodotoxin. Brain Research, 351(1), 67–80.CrossRefGoogle Scholar
  105. van Pelt, J., Vajda, I., Wolters, P. S., Corner, M. A., & Ramakers, G. J. A. (2005). Dynamics and plasticity in developing neural networks in vitro. Progress in Brain Research, 147, 171–188.CrossRefGoogle Scholar
  106. van Pelt, J., Wolters, P. S., Corner, M. A., Rutten, W. L., & Ramakers, G. J. (2004). Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Transactions on Biomedical Engineering, 51, 2051–2062.CrossRefGoogle Scholar
  107. Volgushev, M., Chauvette, S., Mukovski, M., & Timofeev, I. (2006). Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations. The Journal of Neuroscience, 26, 5665–5672.CrossRefGoogle Scholar
  108. Wagenaar, D. A., Pine, J., & Potter, S. M. (2004). Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. Journal of Neuroscience Methods, 138, 27–37.CrossRefGoogle Scholar
  109. Wagenaar, D. A., Pine, J., & Potter, S. M. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 7, 11.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wallach, A. (2013). The response clamp: Functional characterization of neural systems using closed-loop control. Frontiers in Neural Circuits, 7, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wallach, A., Eytan, D., Gal, A., Zrenner, C., & Marom, S. (2011). Neuronal response clamp. Front Neuroeng, 4, 3.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wallach, A., & Marom, S. (2012). Interactions between network synchrony and the dynamics of neuronal threshold. Journal of Neurophysiology, 107, 2926–2936.CrossRefGoogle Scholar
  113. Weihberger, O., Okujeni, S., Mikkonen, J. E., & Egert, U. (2013). Quantitative examination of stimulus-response relations in cortical networks in vitro. Journal of Neurophysiology, 109, 1764–1774.CrossRefGoogle Scholar
  114. Werthheimer, M. (1953). An investigation of the randomness of threshold measurements. Journal of Experimental Psychology, 45, 294–303.CrossRefGoogle Scholar
  115. Yu, Y., Romero, R., & Lee, T. S. (2005). Preference of sensory neural coding for 1/f signals. Physical Review Letters, 94, 108103.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sebastian Reinartz
    • 1
  1. 1.Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations