Retinocytoma or Retinoma

  • Randy C. Bowen
  • Christina Stathopoulos
  • Francis L. Munier
  • Arun D. SinghEmail author


The term retinoma was first introduced in 1982 by Gallie et al. to define nonprogressive retinal lesions observed in patients known to carry the gene for retinoblastoma. Based on the nomenclature used to classify pineal body tumors (benign, pineocytoma, and malignant, pineoblastoma), an alternate term retinocytoma has been also used to describe these tumors. The incidence of retinocytoma in the general population is not known but ranges from 1.8% to 10% among those diagnosed with or having a positive family history of retinoblastoma. Most of the cases are diagnosed in the parents or other first-degree relatives of a child with retinoblastoma. Retinocytoma is considered to be a benign manifestation of the RB1 gene mutation. In theory then, all retinoblastomas progress through a stage of retinocytoma, however brief, before accrued genetic instability leads to uncontrolled proliferation (retinoblastoma). The majority of patients with retinocytoma are asymptomatic, and the diagnosis occurs either on routine eye examination or when the diagnosis of retinoblastoma is made in another family member prompting an eye examination. The ophthalmoscopic appearance of the retinocytoma resembles the spectrum of retinoblastoma regression patterns observed after irradiation. Presence of a translucent-gray retinal mass, calcification, retinal pigment epithelial alteration, and chorioretinal atrophy are four diagnostic ophthalmoscopic features of retinocytoma. Hematoxylin and eosin of retinocytoma shows well-differentiated prominent photoreceptors (fleurettes) with normal-sized nuclei with no pleomorphism or mitotic activity. Despite characteristic ophthalmoscopic features of retinocytoma outlined above, certain entities such as retinoblastoma, astrocytic hamartoma, and myelinated nerve fibers can closely resemble retinocytoma. While many retinocytomas remain benign for the lifetime of an individual, malignant transformation into retinoblastoma can also occur with an estimated transformation rate of 4%. Thus if suspected, retinocytoma should initially be closely followed, especially in children, to confirm the absence of growth.


Retinoma Retinocytoma Benign mutation Malignant transformation 


  1. 1.
    Gallie BL, Ellsworth RM, Abramson DH, et al. Retinoma: spontaneous regression of retinoblastoma or benign manifestation of the mutation? Br J Cancer. 1982;45(4):513–21.CrossRefGoogle Scholar
  2. 2.
    Margo C, Hidayat A, Kopelman J, et al. Retinocytoma. A benign variant of retinoblastoma. Arch Ophthalmol. 1983;101(10):1519–31.CrossRefGoogle Scholar
  3. 3.
    Aaby AA, Price RL, Zakov ZN. Spontaneously regressing retinoblastomas, retinoma, or retinoblastoma group 0. Am J Ophthalmol. 1983;96(3):315–20.CrossRefGoogle Scholar
  4. 4.
    Abramson DH. Retinoma, retinocytoma, and the retinoblastoma gene. Arch Ophthalmol. 1983;101(10):1517–8.CrossRefGoogle Scholar
  5. 5.
    Lommatzsch PK, Zimmermann W, Lommatzsch R. Spontaneous growth inhibition in retinoblastoma. Klin Monatsbl Augenheilkd. 1993;202(3):218–23.CrossRefGoogle Scholar
  6. 6.
    Balmer A, Munier F, Gailloud C. Retinoma. Case studies. Ophthalmic Paediatr Genet. 1991;12(3):131–7.CrossRefGoogle Scholar
  7. 7.
    Singh AD, Santos CM, Shields CL, et al. Observations on 17 patients with retinocytoma. Arch Ophthalmol. 2000;118(2):199–205.CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Chen Y, Wu Z, et al. Retinoma and phthisis bulbi of retinoblastoma. 1. Clinical and genetic analysis. Yan Ke Xue Bao. 1992;8(3):117–21.PubMedGoogle Scholar
  9. 9.
    Abouzeid H, Balmer A, Moulin AP, et al. Phenotypic variability of retinocytomas: preregression and postregression growth patterns. Br J Ophthalmol. 2012;96(6):884–9.CrossRefGoogle Scholar
  10. 10.
    Lueder GT, Heon E, Gallie BL. Retinoma associated with vitreous seeding. Am J Ophthalmol. 1995;119(4):522–3.CrossRefGoogle Scholar
  11. 11.
    Eagle RC Jr, Shields JA, Donoso L, et al. Malignant transformation of spontaneously regressed retinoblastoma, retinoma/retinocytoma variant. Ophthalmology. 1989;96(9):1389–95.CrossRefGoogle Scholar
  12. 12.
    Gallie BL, Phillips RA, Ellsworth RM, et al. Significance of retinoma and phthisis bulbi for retinoblastoma. Ophthalmology. 1982;89(12):1393–9.CrossRefGoogle Scholar
  13. 13.
    Balmer A, Munier F, Gailloud C. Retinoma and phtisis bulbi: benign expression of retinoblastoma. Klin Monatsbl Augenheilkd. 1992;200(5):436–9.CrossRefGoogle Scholar
  14. 14.
    Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3.CrossRefGoogle Scholar
  15. 15.
    Parma D, Ferrer M, Luce L, et al. RB1 gene mutations in Argentine retinoblastoma patients. Implications for genetic counseling. PloS One. 2017;12(12):e0189736.CrossRefGoogle Scholar
  16. 16.
    Dimaras H, Khetan V, Halliday W, et al. Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma. Hum Mol Genet. 2008;17(10):1363–72.CrossRefGoogle Scholar
  17. 17.
    Mastrangelo D, De Francesco S, Di Leonardo A, et al. Does the evidence matter in medicine? The retinoblastoma paradigm. Int J Cancer. 2007;121(11):2501–5.CrossRefGoogle Scholar
  18. 18.
    Abouzeid H, Schorderet DF, Balmer A, et al. Germline mutations in retinoma patients: relevance to low-penetrance and low-expressivity molecular basis. Mol Vis. 2009;15:771–7.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sampieri K, Amenduni M, Papa FT, et al. Array comparative genomic hybridization in retinoma and retinoblastoma tissues. Cancer Sci. 2009;100(3):465–71.CrossRefGoogle Scholar
  20. 20.
    Mataftsi A, Zografos L, Balmer A, et al. Chiasmatic infiltration secondary to late malignant transformation of retinoma. Ophthalmic Genet. 2012;33(3):155–8.CrossRefGoogle Scholar
  21. 21.
    Singh AD, Garway-Heath D, Love S, et al. Relationship of regression pattern to recurrence in retinoblastoma. Br J Ophthalmol. 1993;77(1):12–6.CrossRefGoogle Scholar
  22. 22.
    Garoon RB, Medina CA, Scelfo C, et al. Retinocytoma with vitreous seeding: new insights from enhanced depth imaging optical coherence tomography and high-resolution posterior segment ultrasonography. Retin Cases Brief Rep. 2018.Google Scholar
  23. 23.
    Mashayekhi A, Shields CL, Eagle RC Jr, et al. Cavitary changes in retinoblastoma: relationship to chemoresistance. Ophthalmology. 2005;112(6):1145–50.CrossRefGoogle Scholar
  24. 24.
    Morris WE, LaPiana FG. Spontaneous regression of bilateral multifocal retinoblastoma with preservation of normal visual acuity. Ann Ophthalmol. 1974;6(11):1192–4.PubMedGoogle Scholar
  25. 25.
    Lam A, Shields CL, Manquez ME, et al. Progressive resorption of a presumed spontaneously regressed retinoblastoma over 20 years. Retina. 2005;25(2):230–1.CrossRefGoogle Scholar
  26. 26.
    Nork TM, Poulsen GL, Millecchia LL, et al. p53 regulates apoptosis in human retinoblastoma. Arch Ophthalmol. 1997;115(2):213–9.CrossRefGoogle Scholar
  27. 27.
    Papac RJ. Spontaneous regression of cancer. Cancer Treat Rev. 1996;22(6):395–423.CrossRefGoogle Scholar
  28. 28.
    Mendoza PR, Specht CS, Hubbard GB, et al. Histopathologic grading of anaplasia in retinoblastoma. Am J Ophthalmol. 2015;159(4):764–76.CrossRefGoogle Scholar
  29. 29.
    Shields CL, Say EAT, Fuller T, et al. Retinal astrocytic hamartoma arises in nerve fiber layer and shows “Moth-Eaten” optically empty spaces on optical coherence tomography. Ophthalmology. 2016;123(8):1809–16.CrossRefGoogle Scholar
  30. 30.
    Soliman SE, VandenHoven C, MacKeen LD, et al. Optical coherence tomography-guided decisions in retinoblastoma management. Ophthalmology. 2017;124(6):859–72.CrossRefGoogle Scholar
  31. 31.
    Giles J, Singh AD, Rundle PA, et al. Retinal astrocytic hamartoma with exudation. Eye. 2005;19(6):724–5.CrossRefGoogle Scholar
  32. 32.
    Moll AC, Imhof SM, Bouter LM, et al. Second primary tumors in patients with retinoblastoma. A review of the literature. Ophthalmic Genet. 1997;18(1):27–34.CrossRefGoogle Scholar
  33. 33.
    Korswagen LA, Moll AC, Imhof SM, et al. A second primary tumor in a patient with retinoma. Ophthalmic Genet. 2004;25(1):45–8.CrossRefGoogle Scholar
  34. 34.
    Bremner R, Du DC, Connolly-Wilson MJ, et al. Deletion of RB exons 24 and 25 causes low-penetrance retinoblastoma. Am J Hum Genet. 1997;61(3):556–70.CrossRefGoogle Scholar
  35. 35.
    Sakai T, Ohtani N, McGee TL, et al. Oncogenic germ-line mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature. 1991;353(6339):83–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Randy C. Bowen
    • 1
  • Christina Stathopoulos
    • 2
  • Francis L. Munier
    • 2
  • Arun D. Singh
    • 3
    Email author
  1. 1.Department of OphthalmologyUniversity of WisconsinMadisonUSA
  2. 2.Department of OphthalmologyJules-Gonin Eye Hospital, University of LausanneLausanneSwitzerland
  3. 3.Department of Ophthalmic OncologyCole Eye Institute, Cleveland ClinicClevelandUSA

Personalised recommendations