Advertisement

Pericytes in Bone Marrow

  • Yuya KunisakiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

Bone marrow environments are composed of multiple cell types, most of which are thought to be derived from mesenchymal stem cells. In mouse bone marrow, stromal cells with CD45 Tie2 CD90 CD51+ CD105+ phenotype, Nestin-GFP+, CXCL12-abundant reticular (CAR) cells, PDGFRα+ Sca-1+ or CD51+ PDGFRα+, and Prx-1-derived CD45 Ter119 PDGFRα+ Sca-1+ populations select for MSC activity. There is evidence that these stromal cell populations display some significant overlap with each other and comprise important cellular constituents of the hematopoietic stem cell niche. Moreover, these mesenchymal cell populations share characteristics in their location as they all are found around bone marrow vessels (can be called “pericytes”). In this chapter, with reviewing the recent literatures, how the pericytes relate to physiological and pathological hematopoiesis is argued.

Keywords

Pericytes Perivascular cells Hematopoietic stem cells Niche Mesenchymal stem cells Skeletal progenitor Microenvironments Bone marrow vessels Leukemia Cancer Cancer microenvironments Cytokine niche 

References

  1. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130PubMedPubMedCentralGoogle Scholar
  2. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161PubMedGoogle Scholar
  3. Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A et al (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512(7512):78–81PubMedGoogle Scholar
  4. Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A et al (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19(3):214–223PubMedPubMedCentralGoogle Scholar
  5. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650PubMedGoogle Scholar
  6. Caplan AI (2017) New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res 35(6):1151–1159PubMedGoogle Scholar
  7. Chan CK, Chen CC, Luppen CA, Kim JB, DeBoer AT, Wei K et al (2009) Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457(7228):490–494PubMedGoogle Scholar
  8. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS et al (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530(7589):223–227PubMedPubMedCentralGoogle Scholar
  9. Correa D, Somoza RA, Lin P, Schiemann WP, Caplan AI (2016) Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer 138(2):417–427PubMedGoogle Scholar
  10. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235PubMedPubMedCentralGoogle Scholar
  11. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462PubMedPubMedCentralGoogle Scholar
  12. Druzd D, Matveeva O, Ince L, Harrison U, He W, Schmal C et al (2017) Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46(1):120–132PubMedPubMedCentralGoogle Scholar
  13. Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X et al (2014) Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 25(6):778–793PubMedGoogle Scholar
  14. Frenette PS, Pinho S, Lucas D, Scheiermann C (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31:285–316PubMedGoogle Scholar
  15. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230PubMedPubMedCentralGoogle Scholar
  16. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y et al (2014) Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15(3):365–375PubMedPubMedCentralGoogle Scholar
  17. Hsu YC, Pasolli HA, Fuchs E (2011) Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144(1):92–105PubMedPubMedCentralGoogle Scholar
  18. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121PubMedGoogle Scholar
  19. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA et al (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449(7159):238–242PubMedPubMedCentralGoogle Scholar
  20. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N et al (2014) Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 506(7487):240–244PubMedPubMedCentralGoogle Scholar
  21. Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi S et al (2012) Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One 7(11):e46436PubMedPubMedCentralGoogle Scholar
  22. Kunisaki Y, Frenette PS (2012) The secrets of the bone marrow niche: enigmatic niche brings challenge for HSC expansion. Nat Med 18(6):864–865PubMedPubMedCentralGoogle Scholar
  23. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643PubMedPubMedCentralGoogle Scholar
  24. Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132(4):612–630PubMedGoogle Scholar
  25. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545PubMedPubMedCentralGoogle Scholar
  26. Li XM, Hu Z, Jorgenson ML, Slayton WB (2009) High levels of acetylated low-density lipoprotein uptake and low tyrosine kinase with immunoglobulin and epidermal growth factor homology domains-2 (Tie2) promoter activity distinguish sinusoids from other vessel types in murine bone marrow. Circulation 120(19):1910–1918PubMedGoogle Scholar
  27. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699PubMedGoogle Scholar
  28. Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C et al (2014) Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14(6):824–837PubMedGoogle Scholar
  29. Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20(8):833–846PubMedPubMedCentralGoogle Scholar
  30. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447PubMedGoogle Scholar
  31. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834PubMedPubMedCentralGoogle Scholar
  32. Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133(19):3733–3744PubMedGoogle Scholar
  33. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A et al (2014) Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 29(3):340–349PubMedPubMedCentralGoogle Scholar
  34. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206(11):2483–2496PubMedPubMedCentralGoogle Scholar
  35. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334PubMedPubMedCentralGoogle Scholar
  36. Morrison SJ, White PM, Zock C, Anderson DJ (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96(5):737–749PubMedGoogle Scholar
  37. Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E et al (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2(4):392–403PubMedGoogle Scholar
  38. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4):1232–1239PubMedGoogle Scholar
  39. Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G et al (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351(6269):aab2116PubMedGoogle Scholar
  40. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399PubMedGoogle Scholar
  41. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128PubMedGoogle Scholar
  42. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644PubMedPubMedCentralGoogle Scholar
  43. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60PubMedGoogle Scholar
  44. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y et al (2013) PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210(7):1351–1367PubMedPubMedCentralGoogle Scholar
  45. Pinho S, Marchand T, Yang E, Wei Q, Nerlov C, Frenette PS (2018) Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev Cell 44(5):634–641.e4PubMedPubMedCentralGoogle Scholar
  46. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857PubMedPubMedCentralGoogle Scholar
  47. Rodda SJ, McMahon AP (2006) Distinct roles for hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133(16):3231–3244PubMedGoogle Scholar
  48. Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A et al (2013) Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502(7470):232–236PubMedGoogle Scholar
  49. Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D et al (2012) Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37(2):290–301PubMedPubMedCentralGoogle Scholar
  50. Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13(3):190–198PubMedPubMedCentralGoogle Scholar
  51. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T et al (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299PubMedPubMedCentralGoogle Scholar
  52. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25PubMedGoogle Scholar
  53. Shen Z, Lu Z, Chhatbar PY, O'Herron P, Kara P (2012) An artery-specific fluorescent dye for studying neurovascular coupling. Nat Methods 9(3):273–276PubMedPubMedCentralGoogle Scholar
  54. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E et al (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201(11):1781–1791PubMedPubMedCentralGoogle Scholar
  55. Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C et al (2012) Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150(2):351–365PubMedPubMedCentralGoogle Scholar
  56. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988PubMedGoogle Scholar
  57. Takakura N (2012) Guest editorial: mutual relationship between vascular biology and hematology. Int J Hematol 95(2):117–118PubMedGoogle Scholar
  58. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA et al (2007a) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129(6):1097–1110PubMedPubMedCentralGoogle Scholar
  59. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007b) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129(6):1081–1095PubMedPubMedCentralGoogle Scholar
  60. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129PubMedGoogle Scholar
  61. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT et al (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18(11):1651–1657PubMedGoogle Scholar
  62. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL et al (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154(5):1112–1126PubMedGoogle Scholar
  63. Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328(3):679–687PubMedGoogle Scholar
  64. Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H et al (2010) Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci U S A 107(29):12919–12924PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kyushu University Hospital, Center for Cellular and Molecular MedicineFukuokaJapan

Personalised recommendations