Advertisement

Pericytes in the Gut

  • Marta Ramirez
  • Nuria Pell
  • Marc Mejias
  • Mercedes FernandezEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

This review chapter describes the current knowledge about the nature of pericytes in the gut, their interaction with endothelial cells in blood vessels, and their pathophysiological functions in the setting of chronic liver disease. In particular, it focuses on the role of these vascular cell types and related molecular signaling pathways in pathological angiogenesis associated with liver disease and in the establishment of the gut-vascular barrier and the potential implications in liver disease through the gut-liver axis.

Keywords

Chronic liver disease Pathological angiogenesis Gut-vascular barrier Portosystemic collateral vessels Mesenteric vascular bed Intestinal circulation 

Notes

Grant Support

This is supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO; SAF2014–55473-R and BES2015–071399); the Spanish Ministry of Science, Innovation and Universities (SAF2017–87988-R); the European Union FEDER funds; the Spanish Association Against Cancer (AECC); the Worldwide Cancer Research Foundation; and the CERCA Programme (Generalitat de Catalunya, Spain). CIBERehd is an initiative from the Instituto de Salud Carlos III.

Disclosures All authors declare no competing financial interests.

References

  1. Abraldes JG, Iwakiri Y, Loureiro-Silva M et al (2006) Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Phys 290:G980–G987Google Scholar
  2. Alverdy JC (1990) Effects of glutamine-supplemented diets on immunology of the gut. JPEN 14:109S–113SCrossRefGoogle Scholar
  3. Armulik A, Genove G, Mäe M et al (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561CrossRefGoogle Scholar
  4. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215CrossRefGoogle Scholar
  5. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420CrossRefGoogle Scholar
  6. Backhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920CrossRefGoogle Scholar
  7. Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260:102–117CrossRefGoogle Scholar
  8. Bava FA, Eliscovich C, Ferreira PG et al (2013) CPEB1 coordinates alternative 3’-UTR formation with translational regulation. Nature 495:121–125CrossRefGoogle Scholar
  9. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7:452–464CrossRefGoogle Scholar
  10. Bergers G, Song S, Meyer-Morse M et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295CrossRefGoogle Scholar
  11. Bhat M, Arendt BA, Bhat V et al (2016) Implication of the intestinal microbiome in complications of cirrhosis. World J Hepatol 8:1128–1136CrossRefGoogle Scholar
  12. Calderone V, Gallego J, Fernandez-Miranda G et al (2016) Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of VEGF and angiogenesis in chronic liver disease. Gastroenterology 150:982–997CrossRefGoogle Scholar
  13. Chatterjee S (2014) Reversal of vasohibin-driven negative feedback loop of vascular endothelial growth factor/angiogenesis axis promises a novel antifibrotic therapeutic strategy for liver diseases. Hepatology 60:458–460CrossRefGoogle Scholar
  14. Coch L, Mejias M, Berzigotti A et al (2014) Disruption of negative feedback loop between vasohibin-1 and VEGF decreases portal pressure, angiogenesis and fibrosis in cirrhotic rats. Hepatology 60:633–647CrossRefGoogle Scholar
  15. Coffey JC, O’Leary DP (2016) The mesentery: structure, function, and role in disease. Lancet Gastroenterol Hepatol 1:238–247CrossRefGoogle Scholar
  16. Daneman R, Zhou L, Kebede AA et al (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566CrossRefGoogle Scholar
  17. Drake RL, Vogl AW, Mitchell A (2015) Gray’s anatomy for students, 3rd edn. Churchill Livingstone/Elsevier, Philadelphia, PA, pp 271–275Google Scholar
  18. Fernandez M (2015) Molecular pathophysiology of portal hypertension. Hepatology 61:1406–1415CrossRefGoogle Scholar
  19. Fernandez M, Vizzutti F, Garcia-Pagan JC et al (2004) Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 126:886–894CrossRefGoogle Scholar
  20. Fernandez M, Mejias M, Angermayr B et al (2005) Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol 43:98–103CrossRefGoogle Scholar
  21. Fernandez M, Mejias M, Garcia-Pras E et al (2007) Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 46:1208–1217CrossRefGoogle Scholar
  22. Fernandez M, Semela D, Bruix J et al (2009) Angiogenesis in liver disease. J Hepatol 50:604–620CrossRefGoogle Scholar
  23. Fernandez-Miranda G, Mendez R (2012) The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 11:460–472CrossRefGoogle Scholar
  24. Gaengel K, Genove G, Armulik A et al (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638CrossRefGoogle Scholar
  25. Gallego J, Garcia-Pras E, Mejias M et al (2017) Therapeutic siRNA targeting endothelial KDR decreases portosystemic collateralization in portal hypertension. Sci Rep 7:14791CrossRefGoogle Scholar
  26. Garcia-Pras E, Gallego J, Coch L et al (2017) Role and therapeutic potential of vascular stem/progenitor cells in pathological neovascularisation during chronic portal hypertension. Gut 66:1306–1320CrossRefGoogle Scholar
  27. Garcia-Tsao G, Bosch J (2010) Management of varices and variceal hemorrhage in cirrhosis. N Engl J Med 362:823–832CrossRefGoogle Scholar
  28. Garcia-Tsao G, Sanyal AJ, Grace N et al (2007) Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 46:922–938CrossRefGoogle Scholar
  29. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140:859–870CrossRefGoogle Scholar
  30. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177CrossRefGoogle Scholar
  31. Granger DN, Holm L, Kvietys PR (2015) The gastrointestinal circulation: physiology and pathophysiology. In: Terjung R (ed) Comprehensive physiology. Wiley, Hoboken, NJ. https://doi.org/10.1002/cphy.c150007CrossRefGoogle Scholar
  32. Gray H, Lewis WH (2000) Gray’s anatomy of the human body, 20th edn. Bartleby, New York, NYGoogle Scholar
  33. Guarner C, Soriano G, Tomas A et al (1993) Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepathology 18:1139–1143CrossRefGoogle Scholar
  34. Gupta TK, Toruner M, Chung MK et al (1998) Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology 28:926–931CrossRefGoogle Scholar
  35. Harper D, Chandler B (2016) Splanchnic circulation. BJA Education 16:66–71CrossRefGoogle Scholar
  36. Hirschi K, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698CrossRefGoogle Scholar
  37. Iwakiri Y, Shah V, Rockey DC (2014) Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 61:912–924CrossRefGoogle Scholar
  38. Jacobson ED (1982) Physiology of the mesenteric circulation. Physiologist 25:439–443PubMedGoogle Scholar
  39. Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953CrossRefGoogle Scholar
  40. Jankowski JA, Goodlad RA, Wright NA (1994) Maintenance of normal intestinal mucosa: function, structure, and adaptation. Gut 35(Suppl 1):S1–S4CrossRefGoogle Scholar
  41. Kachlik D, Baca V, Stingl J (2010) The spatial arrangement of the human large intestinal wall blood circulation. J Anat 216:335–343CrossRefGoogle Scholar
  42. Kelly-Goss MR, Sweat RS, Stapor PC et al (2014) Targeting pericytes for angiogenic therapies. Microcirculation 21:345–357CrossRefGoogle Scholar
  43. Kvietys PR (2010) The gastrointestinal circulation (chap. 2: anatomy). Morgan & Claypool Life Sciences, San Rafael, CAGoogle Scholar
  44. Liebner S, Corada M, Bangsow T et al (2008) Wnt/−catenin signaling controls development of the blood—brain barrier. J Cell Biol 183:409–417CrossRefGoogle Scholar
  45. Llovet JM, Bruix J (2009) Testing molecular therapies in hepatocellular carcinoma: the need for randomized phase II trials. J Clin Oncol 27:833–835CrossRefGoogle Scholar
  46. Maillo C, Martin J, Sebastian D et al (2017) Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol 19:94–105CrossRefGoogle Scholar
  47. Matheson PJ, Wilson MA, Garrison RN (2000) Regulation of intestinal blood flow. J Surg Res 93:182–196CrossRefGoogle Scholar
  48. Mejias M, Garcia-Pras E, Tiani C et al (2009) Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49:1245–1256CrossRefGoogle Scholar
  49. Mejias M, Coch L, Berzigotti A et al (2015) Antiangiogenic and antifibrogenic activity of pigment epithelium-derived factor (PEDF) in bile duct-ligated portal hypertensive rats. Gut 64:657–666CrossRefGoogle Scholar
  50. Mendez R, Hake LE, Andresson T et al (2000a) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-Mos mRNA. Nature 404:302–307CrossRefGoogle Scholar
  51. Mendez R, Murthy KG, Ryan K et al (2000b) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 6:1253–1259CrossRefGoogle Scholar
  52. Ortiz-Zapater E, Pineda D, Martínez-Bosch N et al (2011) Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 18:83–90CrossRefGoogle Scholar
  53. Phillips GB, Schwartz R, Gabuzda GJ Jr et al (1952) The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N Engl J Med 247:239–246CrossRefGoogle Scholar
  54. Pinter M, Sieghart W, Reiberger T et al (2012) The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma-a pilot study. Aliment Pharmacol Ther 35:83–91CrossRefGoogle Scholar
  55. Pique M, Lopez JM, Foissac S et al (2008) A combinatorial code for CPE-mediated translational control. Cell 132:434–448CrossRefGoogle Scholar
  56. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887CrossRefGoogle Scholar
  57. Reiberger T, Angermayr B, Schwabl P et al (2009) Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. J Hepatol 51:865–873CrossRefGoogle Scholar
  58. Reiberger T, Payer BA, Schwabl P et al (2013) Nebivolol treatment increases splanchnic blood flow and portal pressure in cirrhotic rats via modulation of nitric oxide signalling. Liver Int 33:561–568CrossRefGoogle Scholar
  59. Rockey DC, Chung JJ (1998) Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 114:344–351CrossRefGoogle Scholar
  60. Sarkissian M, Mendez R, Richter JD (2004) Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora a and glycogen synthase kinase-3. Genes Dev 18:48–61CrossRefGoogle Scholar
  61. Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146:1513–1524CrossRefGoogle Scholar
  62. Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet 371:838–851CrossRefGoogle Scholar
  63. Sharara AI, Rockey DC (2001) Gastroesophageal variceal hemorrhage. N Engl J Med 345:669–681CrossRefGoogle Scholar
  64. Spadoni I, Zagato E, Bertocchi A et al (2015) A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350:830–834CrossRefGoogle Scholar
  65. Spadoni I, Pietrelli A, Pesole G et al (2016) Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes 7:540–548CrossRefGoogle Scholar
  66. Sparks HV (2011) Effect of local metabolic factors on vascular smooth muscle. Supplement 7: handbook of physiology, the cardiovascular system, vascular smooth muscle, pp 475–513Google Scholar
  67. Stapor PC, Sweat RS, Dashti DC et al (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51:163–174CrossRefGoogle Scholar
  68. Thorburn T, Aali M, Lehmann C (2018) Immune response to systemic inflammation in the intestinal microcirculation. Front Biosci (Landmark Ed) 23:782–795CrossRefGoogle Scholar
  69. Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC et al (2015) Intestinal barrier dysfunction in cirrhosis: current concepts in pathophysiology and clinical implications. World J Hepatol 7:2058–2068CrossRefGoogle Scholar
  70. Tugues S, Fernandez-Varo G, Muñoz-Luque J et al (2007) Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 46:1919–1926CrossRefGoogle Scholar
  71. Usami M, Miyoshi M, Yamashita H (2015) Gut microbiota and host metabolism in liver cirrhosis. World J Gastroenterol 21:11597–11608CrossRefGoogle Scholar
  72. Van Steenkiste C, Geerts A, Vanheule E et al (2009) Role of placental growth factor in mesenteric neoangiogenesis in a mouse model of portal hypertension. Gastroenterology 137:2112–2124CrossRefGoogle Scholar
  73. Vespasiani-Gentilucci U, Rombouts K (2015) Boosting pigment epithelial-derived factor: a promising approach for the treatment of early portal hypertension. Gut 64:523–524CrossRefGoogle Scholar
  74. Volta U, Bonazzi C, Bianchi FB et al (1987) IgA antibodies to dietary antigens in liver cirrhosis. Ric Clin Lab 17:235–242PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marta Ramirez
    • 1
  • Nuria Pell
    • 1
  • Marc Mejias
    • 1
    • 2
  • Mercedes Fernandez
    • 1
    • 2
    Email author
  1. 1.Angiogenesis in Liver Disease Research GroupIDIBAPS Biomedical Research Institute, Hospital Clinic, University of BarcelonaBarcelonaSpain
  2. 2.Biomedical Research Networking Center on Hepatic and Digestive Disease (CIBEREHD)Spanish National Institute of HealthBarcelonaSpain

Personalised recommendations