Advertisement

The Pluripotent Microvascular Pericytes Are the Adult Stem Cells Even in the Testis

  • Michail S. DavidoffEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

The pericytes of the testis are part of the omnipresent population of pericytes in the vertebrate body and are the only true pluripotent adult stem cells able to produce structures typical for the tree primitive germ layers: ectoderm, mesoderm, and endoderm. They originate very early in the embryogenesis from the pluripotent epiblast. The pericytes become disseminated through the whole vertebrate organism by the growing and differentiating blood vessels where they remain in specialized periendothelial vascular niches as resting pluripotent adult stem cells for tissue generation, maintenance, repair, and regeneration. The pericytes are also the ancestors of the perivascular multipotent stromal cells (MSCs). The variable appearance of the pericytes and their progeny reflects the plasticity under the influence of their own epigenetic and the local environmental factors of the host organ. In the testis the pericytes are the ancestors of the neuroendocrine Leydig cells. After activation the pericytes start to proliferate, migrate, and build transit-amplifying cells that transdifferentiate into multipotent stromal cells. These represent progenitors for a number of different cell types in an organ. Finally, it becomes evident that the pericytes are a brilliant achievement of the biological nature aiming to supply every organ with an omnipresent population of pluripotent adult stem cells. Their fascinating features are prerequisites for future therapy concepts supporting cell systems of organs.

Keywords

Pericytes Testis Pericyte origin Testis microvasculature Vascular niche Stem cell migration Transit amplifying cells Transdifferentiation Adult stem cells Neuroendocrine features Peritubular cells Neural crest cells Periendothelial cells Perivascular cells Pericyte plasticity 

References

  1. Abedin M, Tintut Y, Demer LL (2004) Mesenchymal stem cells and the artery wall. Circ Res 95:671–676PubMedCrossRefGoogle Scholar
  2. Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758PubMedCrossRefGoogle Scholar
  3. Angelova P, Davidoff MS (1989) Immunocytochemical demonstration of substance P in Hamster Leydig cells during ontogenesis. Z Mikrosk Anat Forsch 103:560–566PubMedGoogle Scholar
  4. Angelova P, Davidoff MS, Baleva K, Staykova M (1991) Substance P and neuron-specific enolase-like immunoreactivity of rodent Leydig cells in tissue section and cell culture. Acta Histochem 91:131–139PubMedCrossRefGoogle Scholar
  5. Anjos-Afonso F, Bonnet D (2007) Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109:1298–1306PubMedCrossRefGoogle Scholar
  6. Ariyaratne HB, Mendis-Handagama SMLC, Hales DB, Mason JI (2000) Studies on the onset of Leydig precursor cell differentiation in the prepubertal rat testis. Biol Reprod 63:165–171CrossRefGoogle Scholar
  7. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215PubMedCrossRefGoogle Scholar
  8. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cerebr Blood Flow Metab 36:451–455CrossRefGoogle Scholar
  9. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvasc Res 52:127–142PubMedCrossRefGoogle Scholar
  10. Barón M, Gallego A (1972) The relation of the microglia with the pericytes in the cat cerebral cortex. Z Zellforsch Mihosk Anat 128:42–57CrossRefGoogle Scholar
  11. Basciani S, Mariani S, Arizzi M, Ulisse S, Rucci N, Jannini EA, Rocca CD, Manicone A, Carani C, Spera G, Gnessi L (2002) Expression of platelet-derived growth factor-A (PDGF-A), PDGF-B, and PDGF receptor- a and -s during human testicular development and disease. J Clin Endocrinol Metab 87:2310–2319PubMedGoogle Scholar
  12. Benninghoff A (1926) Über die Formenreihe der glatten Muskulatur und die Bedeutung der Rouget‘schen Zellen an den Kapillaren. Z Zellf Mikr Anat 4:126–170Google Scholar
  13. Bensley RR, Vimtrup BJ (1928) On the nature of the Rouget cells of capillaries. Anat Rec 39:37–55CrossRefGoogle Scholar
  14. Benton L, Shan L-X, Hardy MP (1995) Differentiation of adult Leydig cells. J Steroid Biochem Mol Biol 53:61–68PubMedCrossRefGoogle Scholar
  15. Barembaum M, Bronner-Fraser M (2005) Early steps in neural crest specification. Seminars in Cell & Developmental Biology; 16(6): 642-646Google Scholar
  16. Bergers G (2008) Pericytes, the mural cells of the microvascular system. In: Figg WD, Folkman J (eds) Angiogenesis. An integrative approach from science to medicine, Chapter 4. Springer, New York, pp 45–53Google Scholar
  17. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bhagavati S (2008) Stem cell based therapy for skeletal muscle diseases. Curr Stem Cell Res Ther 3(3):219–228PubMedCrossRefGoogle Scholar
  19. Bhushan S, Meinhardt A (2017) The macrophages in testis function. J Repr Immun 119:107–112CrossRefGoogle Scholar
  20. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cells 2:313–319CrossRefGoogle Scholar
  21. Birbrair A, Delbono O (2015) Pericytes are essential for skeletal muscle formation. Stem Cell Rev Rep 11:547–548CrossRefGoogle Scholar
  22. Birbrair A, Zhank T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013a) Role of pericytes in skeletal muscle regeneration and fat accumulatioin. Stem Cells Dev 22:2298–22314Google Scholar
  23. Birbrair A, Zhang T, Wang Z-M, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013b) Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Exp Cell Res 319:45–63PubMedCrossRefGoogle Scholar
  24. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang Z-M, Messi ML, Mintz A, Delbono O (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bischofberger J, Schmidt-Hieber C (2006) Adulte Neurogenese im Hippocampus. e-Neuroforum 3:212–221Google Scholar
  26. Bjornson CRR, Rietze RL, Reynolds BA, Magli MC, Vescovi A (1999) Turning brain into blood: adult neural stem cells adopt a hematopoietic fate in vivo. Science 283:534–537PubMedCrossRefGoogle Scholar
  27. Bouacida A, Rosset P, Trichet V, Guilloton F, Espagnolle N, Cordonier T, Heymann D, Layrolle P, Sensébé L, Deschaseaux F (2012) Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS One 7(11):e486548CrossRefGoogle Scholar
  28. Brazelton TR, Rossi FMV, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779PubMedCrossRefGoogle Scholar
  29. Breau MA, Pietri T, Stemmler MP, Thiery P, Weston JA (2008) A nonneural epithelial domain of embryonic cranial neural folds gives rise to ectomesenchyme. Proc Natl Acad Sci U S A 105:7750–7755PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Gen 5(7):509–521CrossRefGoogle Scholar
  31. Brennan J, Tilmann C, Capel B (2003) Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800–810PubMedPubMedCentralCrossRefGoogle Scholar
  32. Bronner ME, Simões-Costa M (2016) The neural crest migrating into the 21st century. Curr Top Dev Biol 116:115–134PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B, Lopes SMCS, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epblast stem cells from mammalian embryos. Nature 448:191–196PubMedCrossRefGoogle Scholar
  34. Buehr M, Smith A (2003) Genesis of embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 358:1397–1402PubMedPubMedCentralCrossRefGoogle Scholar
  35. Calloni GW, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2007) Sonic hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. Proc Natl Acad Sci U S A 104:19879–19884PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cano E, Gebala V, Gerhardt H (2017) Pericytes or mesenchymal stem cells: is that the question? Cell Stem Cell 20(3):296–297PubMedCrossRefGoogle Scholar
  37. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230PubMedCrossRefGoogle Scholar
  38. Cervós-Navarro J (1963) Electronenmicroscopische Befunden an den Capillaren der Hirnrinde. Arch Psych Ztschr ges Neurologie 204:484–504Google Scholar
  39. Chan-Ling T (1997) Glial, vascular, and neuronal cytogenesis in whole-mounted cat retina. Microsc Res Tech 36:1–16PubMedCrossRefGoogle Scholar
  40. Chen H, Stanley E, Jin S, Zirkin BR (2010) Stem Leydig cells: From fetal to aged animals. Birth Defects Res C Embryo Today 90:272–283PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chen WCW, Baily JE, Corselli M, Diaz ME, Sun B, Xiang G, Gray GA, Huard J, Péault B (2015) Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33:557–573PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chen H, Wang Y, Ge R, Zirkin BR (2017) Leydig stem cells: identification, proliferation and differentiation. Mol Cell Endocrinol 445:65–71PubMedCrossRefGoogle Scholar
  43. Chikhovskaya JV, Jonker MJ, Meissner A, Breit TM, Repping S, van Pelt AMM (2012) Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Hum Reprod 27(1):210–221PubMedCrossRefGoogle Scholar
  44. Chikhovskaya JV, van Daalen SKM, Kover CM, Repping S, van Pelt AMM (2014) Mesenchymal origin of multipotent human testis-derived stem cells in human testicular cell cultures. Mol Human Reprod 20:155–167CrossRefGoogle Scholar
  45. Chiwakata C, Brackmann B, Hunt N, Davidoff M, Schulze W, Ivell R (1991) Tachykinin (Substance P) gene expression in Leydig cells of the human and mouse testis. Endocrinology 128:2441–2448Google Scholar
  46. Clark ER, Clark EL (1925a) The development of adventitial (Rouget) cells on the blood capillaries of amphibian larvae. Amer J Anat 35:239–264CrossRefGoogle Scholar
  47. Clark ER, Clark EL (1925b) The relation of Rouget cells to capillary contractility. Amer J Anat 35: 265-282Google Scholar
  48. Collas P (2010) Programming differentiation potential in mesenchymal stem cells. Epigenetics 5(6):476–482PubMedCrossRefGoogle Scholar
  49. Collett GDM, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96:930–938PubMedCrossRefGoogle Scholar
  50. Combes AN, Wilhelm D, Davidson T, Dejana E, Harley V, Sinclair A, Koopman P (2009) Endothelial cell migration directs testis cord formation. Dev Biol 326:112–120PubMedCrossRefGoogle Scholar
  51. Crane JF, Trainor PA (2006) Neural Crest stem and progenitor cells. Ann Rev Cell Dev Biol 22 (1):267-286Google Scholar
  52. Crisan M, Deasy B, Gavina M, Zheng B, Huard J, Lazzari L, Péault B (2008a) Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes. Methods Cell Biol 86:295–309PubMedCrossRefGoogle Scholar
  53. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng P-N, Trass J, Schugar R, Deasy BM, Badylak S, Bühring H-J, Giacobino J-P, Lazzari L, Huard J, Péault B (2008b) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRefGoogle Scholar
  54. da Silva Meirelles L, Caplan AI, Nardi NB (2013) Pericytes as the source of mesenchymal stem cells. In: Goldenberg RC d S, de Carvalho ACC (eds) Resident stem cells and regenerative therapy. Elsevier, Amsterdam, pp 233–250. https://doi.org/10.1016/B978-0-12-416012-5.00012-8CrossRefGoogle Scholar
  55. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125:87–99PubMedCrossRefGoogle Scholar
  56. Davidoff MS (2017) The Leydig cells of the testis originate from the microvascular pericytes. Biomed Rev 28:5–25Google Scholar
  57. Davidoff MS, Schulze W, Middendorff R, Holstein A-F (1993) The Leydig cell of the human testis—a new member of the diffuse neuroendocrine system. Cell Tiss Res 271:429–439CrossRefGoogle Scholar
  58. Davidoff MS, Middendorff R, Holstein AF (1996) Dual nature of Leydig cells of the human testis. Biomed Rev 6:11–41CrossRefGoogle Scholar
  59. Davidoff MS, Middendorff R, Koeva Y, Pusch W, Jezek D, Muller D (2001) Glial cell line-derived neurotrophic factor (GDNF) and its receptors GFR a −1 and GFR a −2 in the human testis. Ital J Anat Embryol 106(Suppl 2):p173–p180Google Scholar
  60. Davidoff MS, Middendorff R, Enikolopov G, Rietmacher D, Holstein AF, Müller D (2004) Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 167:935–944PubMedPubMedCentralCrossRefGoogle Scholar
  61. Davidoff MS, Middendorff R, Müller D, Holstein AF (2009) The Neuroendocrine Leydig cells and their stem cell progenitors, the pericytes. In: Sutovsky P, Clascá F, Kmiec Z, Korf H-W, Singh B, Timmermans J-P, Schmeisser MJ (eds) Advances in anatomy, embryology and cell biology, vol 205. Springer, New York, pp 1–154Google Scholar
  62. de Souza LEB, Malta TM, Kashima Hadat S, Covas DT (2016) Mesenchymal stem cells and pericytes: to what extent are they related? Stem Cells Dev 25(24):1843–1852PubMedCrossRefGoogle Scholar
  63. DeFalco T, Bhattacharya I, Williams AV, Sams DM, Capel B (2014) Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 111:E2384–E2393PubMedPubMedCentralCrossRefGoogle Scholar
  64. DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dellavalle A, Sampoalesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain IS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267PubMedCrossRefGoogle Scholar
  66. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenti A, Perani L, Antonioni S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. https://doi.org/10.1038/ncomms1508CrossRefPubMedGoogle Scholar
  67. De-Miguel MP, Arnalich-Montiel F, Lopez-Iglesias P, Blasquez-Martinez A, Nistal M (2009) Epiblast-derived stem cells in embryonic and adult tissues. Int J Dev Biol 53:1529–1540PubMedCrossRefGoogle Scholar
  68. De-Miguel MP, Fuentis-Julian S, Alcaina Y (2010) Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev Rep 6:633–649Google Scholar
  69. Denham M, Hasegawa K, Menheniott T, Rollo B, Zhang D, Hough S, Alshawa A, Febbraro F, Ighanian S, Leung J, Elliott DA, Newgreen DF, Pera MF, Dottori M (2015) Multipotent caudal neural progenitors derived from humans pluripotent stem cells that give rise to lineages of the central and peripheral nervous system. Stem Cells 33(6):1759–1770PubMedPubMedCentralCrossRefGoogle Scholar
  70. Diaz-Flores L Jr, Madrid JF, Guitérrez R (2006) Adult stem and transit-amplifying cell location. Histol Histopathol 21:995–1027PubMedGoogle Scholar
  71. Diaz-Flores L, Gutiérrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969PubMedGoogle Scholar
  72. Diaz-Flores L, Gutiérrez R, Garcia MP, Diaz-Flores L Jr, Valladares F, Madrid JF (2012) Ultrastructure of myopericytoma: a continuum of transitional phenotypes of myopericytes. Ultrastr Pathol 36:189–194CrossRefGoogle Scholar
  73. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134PubMedCrossRefGoogle Scholar
  74. Dogiel AS (1899) Über den Bau der Ganglien in den Geflechten des Darms und der Gallenblase des Menschen und der Säugetiere. Arch Anat Physiol Anat Abt A 3–4:100–158Google Scholar
  75. Donoghue PCJ, Graham A, Kelsh RN (2008) The origin and evolution of the neural crest. BioEssays 30:530–541PubMedPubMedCentralCrossRefGoogle Scholar
  76. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14(16):1581–1593PubMedCrossRefGoogle Scholar
  77. Dore-Duffy P, Cleary K (2011) Morphology and properties of pericytes. Meth Mol Biol 686(Part 1):49–68CrossRefGoogle Scholar
  78. Eberth CJ (1871) Von den Blutgefässen. Capitel VIII. In: Stricker S (ed) Handbuch der Lehre von den Geweben des Menschen und der Tiere, Bd 1. Verlag von Wilhelm Engelmann, Leipzig, pp 191–213Google Scholar
  79. Ergün S, Stingl J, Holstein AF (1994) Microvasculature of the human testis in correlation to Leydig cells and seminiferous tubules. Andrologia 26(5):255–262PubMedCrossRefGoogle Scholar
  80. Ergün S, Davidoff M, Holstein AF (1996) Capillaries in the lamina propria of human seminiferous tubules are partly fenestrated. Cell Tissue Res 286(1):93–102PubMedCrossRefGoogle Scholar
  81. Ergün S, Harneit S, Paust HJ, Mukhopadhyay AK, Holstein AF (1999) Endothelin and endothelin receptors A and B in the human testis. Anat Embryol 199:207–214PubMedCrossRefGoogle Scholar
  82. Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068PubMedGoogle Scholar
  83. Fawcett DW, Neaves WB, Flores MN (1973) Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9:500–532PubMedCrossRefGoogle Scholar
  84. Fecteau KA, Markonjich L, Mason JI, Mendis-Handagama SMLC (2006) Detection of platelet-derived growth factor-α (PDGF-A) protein in cells of Leydig lineage in the postnatal rat testis. Histol Histopathol 21:1295–1302PubMedGoogle Scholar
  85. Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang L-P, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382PubMedCrossRefGoogle Scholar
  86. Fisher M, (2009) Pericyte signaling in the neurovascular unit. Stroke 40 (3, Suppl 1):S13-S15Google Scholar
  87. Flamme I, Frölich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210PubMedCrossRefGoogle Scholar
  88. Florey HW, Carleton HM (1926) Rouget cells and their function. Proc R Soc Lond B 100:23–31CrossRefGoogle Scholar
  89. Friedrich R, Holstein AF, Middendorff R, Davidoff MS (2012) Vascular wall cells contribute to tumorigenesis in cutaneous neurofibromas of patients with Neurofibromatosis type 1. A comparative histological, ultrastructural and immunohistochemical study. Anticancer Res 32:2139–2158PubMedGoogle Scholar
  90. Ge R-S, Dong Q, Sottas CM, Papadopoulos V, Zirkin BR, Hardy MP (2006) In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc Natl Acad Sci U S A 103:2719–2724PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gilbert SF (2000) The Neural Crest. Developmental Biology, 6th edn. Sinauer Associates, Sunderland, MA. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10065/Google Scholar
  92. Griswold SL, Behringer RR (2009) Fetal Leydig cell origin and development. Sexual Development 3 (1):1–15Google Scholar
  93. Gnessi L, Emidi A, Jannini EA, Carosa E, Maroder M, Arizzi M, Ulisse S, Spera G (1995) Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action. J Cell Biol 131:1105–1121PubMedCrossRefGoogle Scholar
  94. Gnessi L, Basciani S, Mariani S, Arizzi M, Spera G, Wang C, Bondjers C, Karlsson L, Betsholtz C (2000) Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J Cell Biol 149(5):1019–1025Google Scholar
  95. Gökçinar-Yagei B, Uçkan-Çetinkaya D, Çelebi-Saltik B (2015) Pericytes: Properties, functions and applications in tissue engineering. Stem Cell Rev Rep 11:549–559CrossRefGoogle Scholar
  96. Goluža T, Boscanin A, Cvetko J, Kozina V, Kosoviċ M, Bernat MM, Kasum M, Kaštelan Ž, Ježek D (2014) Macrophages and Leydig cells in testicular biopsies of azoospermic men. Biomed Res Int 2014:828697, 14 pagesPubMedPubMedCentralCrossRefGoogle Scholar
  97. Gondos B (1980) Development and differentiation of the testis and male reproductive tract. In: Steinberger A, Steinberger E (eds) Testicular development structure and function. Raven, New York, pp 3–20Google Scholar
  98. Gonzalez R, Griparic L, Vargas V, Burgee K, Santacruz P, Anderson R, Schiewe M, Silva F, Patel A (2009) A putative mesenchymal stem cells population isolated from adult human testes. Biochem Biophys Res Commun 385:570–575PubMedCrossRefGoogle Scholar
  99. Gonzalez-Perez O (2012) Neural stem cells in the adult human brain. Biol Biomed Rep 2(1):59–69PubMedPubMedCentralGoogle Scholar
  100. Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, Rockenstein E, Masliah E, Peterson KL, Stallcup WB, Chen J, Evans SM (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20(3):345–359PubMedPubMedCentralCrossRefGoogle Scholar
  101. Günther H (1917) Die mechanische Erregbarkeit der Hautmuskeln und Hautgefäße. In: Kraus F et al (eds) Ergebnisse der Inneren Medizin und Kinderheilkunde, vol 15. Julius Springer, Berlin, pp 620–714CrossRefGoogle Scholar
  102. Haider SG, Servos K, Tran N (2007) Structural and histological analysis of Leydig cell steroidogenic function. In: Payne AH, Hardy MP (eds) Contemporary endocrinology: the Leydig cell in health and disease. Humana Press, Totowa, NJ, pp 33–45CrossRefGoogle Scholar
  103. Hall BK (1998) Germ layers and the germ-layer theory revisited: Primary and secondary germ layers, neural crest as a fourth germ layer, homology, demise of the germ-layer theory. Evol Biol 30:121–186Google Scholar
  104. Hall BK (2000) The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol Dev 2:3–5PubMedCrossRefGoogle Scholar
  105. Hall AP (2006) Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol Pathol 34:763–775PubMedCrossRefGoogle Scholar
  106. Hara Y, Nomura T, Yoshizaki K, Frisén J, Osumi N (2010) Impaired hippocampal neurogenesis and vascular formation in ephrin-A5-deficient mice. Stem Cells 28:974–983PubMedGoogle Scholar
  107. Hermann M, Bara JJ, Sprecher CM, Menzel U, Jalowiec JM, Osinga R, Scherberich A, Alini M, Verrier S (2016) Pericyte plasticity—comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. Eur Cells Mater 31:236–249CrossRefGoogle Scholar
  108. Hill JP, Watson KM (1958) The early development of the brain in marsupials preliminary communication. J Anat 92(Pt4):493–497PubMedPubMedCentralGoogle Scholar
  109. Hill WD, Hess DC, Martin-Studdard A, Carotheres JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96PubMedCrossRefGoogle Scholar
  110. Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698PubMedCrossRefGoogle Scholar
  111. Holstein AF (1999) Spermatogenese beim Menschen: Grundlagenforschung und Klinik. Ann Anat 181:427–436PubMedCrossRefGoogle Scholar
  112. Holstein AF, Davidoff MS (1997) Organization of the intertubular tissue of the human testis. In: Motta PM (ed) Recent advances of cells, tissues and organs. Antonio Delfino Editore, Rome, pp 569–577Google Scholar
  113. Holstein AF, Maekawa M, Nagano T, Davidoff MS (1996) Myofibroblasts in the lamina propria of human seminiferous tubules are dynamic structures of heterogeneous phenotype. Arch Histol Cytol 59:109–125PubMedCrossRefGoogle Scholar
  114. Holstein AF, Schulze W, Davidoff M (2003) Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol 1:107PubMedPubMedCentralCrossRefGoogle Scholar
  115. Hosaka K, Yang Y, Sekia T, Fischera C, Dubeya O, Fredlundc E, Hartman J, Religa P, Morikawa H, Ishii Y, Sasahara M, Larsson O, Cossu G, Cao R, Lim S, Cao Y (2016) Pericyte–fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A 113(38):E5618–E5627Google Scholar
  116. Huhtaniemi I, Pelliniemi LJ (1992) Fetal Leydig cells: cellular origin, morphology, life span, and special functional features. Proc Soc Exp Biol Med 201:125–140PubMedCrossRefGoogle Scholar
  117. Itoh Y, Toriumi H, Yamada S, Hoshino H, Suzuki N (2011) Astrocytes and pericytes cooperatively maintain a capillary-like structure composed of endothelial cells on gel matrix. Brain Res 1406:74–83PubMedCrossRefGoogle Scholar
  118. Jiang Y, Hernderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci U S A 100:11854–11860PubMedPubMedCentralCrossRefGoogle Scholar
  119. Joseph NM (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131 (22):5599-5612Google Scholar
  120. Kahn CR (2008) Can we nip obesity in its vascular bud? Science 322:542–543PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kastschenko N (1888) Zur Entwicklungsgeschichte des Salachierembryos. Anatomischer Anzeiger III (1–32) 16:445–467Google Scholar
  122. Kaufman M (1992) The atlas of mouse development. Academic, London, p 512Google Scholar
  123. Kennedy E, Mooney CJ, Hakimjavadi R, Fitzpatrick E, Guha S, Collins LE, Loscher CE, Morrow D, Redmond EM, Cahill PA (2014) Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells. Cell Tissue Res 358:203–216PubMedCrossRefGoogle Scholar
  124. Kerr JB, Sharpe RM (1985) Stimulatory effect of follicle-stimulating hormone on rat Leydig cells. A morphometric and ultrastructural study. Cell Tissue Res 239:405–415PubMedCrossRefGoogle Scholar
  125. Kerr JB, Donachie K, Rommerts FFG (1985) Selective destruction and regeneration of rat Leydig cells in vivo. Cell Tiss Res 242:145–156CrossRefGoogle Scholar
  126. Kerr JB, Bartlett JMS, Donachie K (1986) Acute response of testicular interstitial tissue in rats to the cytotoxic drug ethane dimethanesulphonate. An ultrastructural and hormonal study. Cell Tissue Res 243:405–414PubMedCrossRefGoogle Scholar
  127. Kerr JB, Knell CM, Abbott M, Donachie K (1987a) Ultrastructural analysis of the effect of ethane dimethanesulphonate on the testis of the rat, guinea pig, hamster and mouse. Cell Tissue Res 249:451–457PubMedGoogle Scholar
  128. Kerr JB, Bartlett JMS, Donachie K, Sharpe RM (1987b) Origin of regenerating Leydig cells in the testis of the adult rat. An ultrastructural, morphometric and hormonal assay study. Cell Tissue Res 249:367–377PubMedGoogle Scholar
  129. Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, McKinell C, van den Driesche S, Jobling MS, Ghambers TJG, De Gendt K, Verhoeven G, O’Hara L, Platts S, de Franca LR, Lara NLM, Anderson RA, Sharpe RM (2014) Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A 111:E1924–E1932PubMedPubMedCentralCrossRefGoogle Scholar
  130. Klein D, Weißhardt P, Kleff V, Jastrow H, Jakob HG, Ergün S (2011) Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6:e20540PubMedPubMedCentralCrossRefGoogle Scholar
  131. Klein D, Meissner N, Kleff V, Jastrow H, Yamaguchi M, Ergün S, Jendrossek V (2014) Nestin(+) tissue-resident multipotent stem cells contribute to tumor progression by differentiating into pericytes and smooth muscle cells resulting in blood vessel remodeling. Front Oncol 4:Article 169PubMedCrossRefGoogle Scholar
  132. Kojima Y, Kaufman-Francis K, Studdert JB, Steiner KA, Power MD, Loebel DAF, Jones V, Hor A, de Alencastro G, Logan GJ, Teber ET, Tam OH, Stutz MD, Alexander IE, Pickett HA, Tam PPL, (2014) The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14 (1):107–120Google Scholar
  133. Krogh A (1919) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52:409–415PubMedPubMedCentralCrossRefGoogle Scholar
  134. Krogh A (1922) The anatomy and physiology of the capillaries. New Haven Yale University Press, London, pp 1–304Google Scholar
  135. Krogh A (1929) Anatomie und Physiologie der Capillaren. p.362, Springer, Berlin-Heidelberg.Google Scholar
  136. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58:1–10PubMedCrossRefGoogle Scholar
  137. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a home of heterogeneous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127PubMedCrossRefGoogle Scholar
  138. Kucia M, Machalinski B, Ratajczak MZ (2006) The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp 66:331–341Google Scholar
  139. Kurtz A (2016) Commentary for “human kidney pericytes produce renin”. Kidney Int 90:1153–1154PubMedCrossRefGoogle Scholar
  140. Landreh L, Stukenborg J-B, Söder O, Svechnikov K (2013) Phenotype and steroidogenic potential of PDGFα-positive rat neonatal peritubular cells. Mol Cell Endocrinol 372:96–104PubMedCrossRefGoogle Scholar
  141. Landreh L, Spinner K, Schubert K, Häkkinen MR, Auriola S, Poutanern M, Söder O, Svechnikov K, Mayerhofer A (2014) Human testicular peritubular cells host putative stem Leydig cells with steroidogenic capacity. J Clin Endocrinol Metab 99(7):E1227–E1235PubMedCrossRefGoogle Scholar
  142. Le Douarin NM, Dupin E (2003) Multipotentiality of the neural crest. Current Opinion in Genetics & Development 13 (5):529–536Google Scholar
  143. Le Douarin NM, Callani GW, Dupin E (2008) The stem cells of the neural crest. Cell Cycle 7:1013–1019PubMedCrossRefGoogle Scholar
  144. Lee RTH, Knapik EW, Thiery JP, Carney TJ (2013a) An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme. Development 140:2923–2932PubMedPubMedCentralCrossRefGoogle Scholar
  145. Lee RTH, Negai H, Nakaya Y, Sheng G, Trainor PA, Weston JA (2013b) Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development 140:4890–4902PubMedPubMedCentralCrossRefGoogle Scholar
  146. Leeson TS, Cookson FB (1974) The mammalian testicular capsule and its muscle elements. J Morph 144:237–254PubMedCrossRefGoogle Scholar
  147. Lindner U, Kramer J, Rohwedel J, Schlenke P (2010) Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother 37:75–83PubMedPubMedCentralCrossRefGoogle Scholar
  148. Ling E-A, Wong W-C (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18PubMedCrossRefGoogle Scholar
  149. Louissaint A Jr, Rao S, Leventhal C, Goldman SA (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34(6):945–960PubMedCrossRefGoogle Scholar
  150. Maekawa M, Kamimura K, Nagano T (1996) Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol 59:1–13PubMedCrossRefGoogle Scholar
  151. Makala H, Pothana L, Sonam S, Malla A, Goel S (2015) Regeneration of Leydig cells in ectopically autografted adult mouse testis. Reproduction 149:259–268PubMedCrossRefGoogle Scholar
  152. Mariani S, Basciani S, Arizzi M, Spera G, Gnessi L (2002) PDGF and the testis. Trends Endocrinol Metab 13(1):11–17PubMedCrossRefGoogle Scholar
  153. Mayer S (1902) Die Muskularisierung der capillaren Blutgefäße. Nachweis des anatomischen Substrats ihrer Kontraktilität. Anat Anz, Jena 21:442–455Google Scholar
  154. McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15PubMedCrossRefGoogle Scholar
  155. Michels NA (1936) The structure of capillaries and the un-myogenic character of Rouget cells (Pericytes) in the omentum of rabbits and the web of living frogs. Anat Rec 65:99–125Google Scholar
  156. Middendorff R , Davidoff MS , Holstein AF (1993) Neuroendocrine marker substances in human Leydig cells – changes by disturbances of testicular function. Andrologia; 25:257–262Google Scholar
  157. Middendorff R, Müller D, Mewe M, Mukhopadhyay AK, Holstein A-F, Davidoff MS (2002) The tunica albuginea of the human testis is characterized by complex contraction and relaxation activities regulated by cyclic GMP. J Clin Endocrinol Metab 87:3486–3499PubMedCrossRefGoogle Scholar
  158. Millner R, Hung S, Erokwu B, Dore-Duffy P, LaManna JC, del Zoppo GJ (2008) Increased expression of fibronectin and the α5ß1integrin angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Mol Cell Neurosci 38:43–52CrossRefGoogle Scholar
  159. Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H, van Daalen S, Korver CM, Hovingh SE, Roepers-Gajadien HL, Raya A, Fluiter K, de Reijke TM, de la Rosette JJMCH, Knegt AC, Belmonte JC, van der Veen F, de Rooij DG, Repping S, van Pelt AMM (2010) Embryonic stem cell-like cells derived from adult human testis. Hum Reprod 25:158–167PubMedCrossRefGoogle Scholar
  160. Molenaar R, de Rooij DG, Rommerts FFG, Reuvers PJ, van der Molen HJ (1985) Specific destruction of Leydig cells in mature rats after in vivo administration of Ethane dimethyl sulfonate. Biol Reprod 33:1213–1222PubMedCrossRefGoogle Scholar
  161. Montiel-Eulefi E, Sánchez R, Rojas M, Bustos-Obregon E (2009) Epiblast embryo stem cells give origin to adult pluripotent cell populations: primordial germ cell, pericytic and haematopoietic stem cells. A review. Int J Morphol 27:1325–1333CrossRefGoogle Scholar
  162. Mori S, Leblond CP (1969) Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–79PubMedCrossRefGoogle Scholar
  163. Morshead CM (2004) Adult neural stem cells: attempting to solve the identity crisis. Dev Neurosci 26:93–199PubMedCrossRefGoogle Scholar
  164. Müller I (1957) Kanälchen—und Capillararchitektonik des Rattenhodens. Z Zellforsch 45:522–537PubMedPubMedCentralGoogle Scholar
  165. Murakami T, Uno Y, Ohtsuka A, Taguchi T (1989) The blood vascular architecture of the rat testis: a scanning electron microscopic study of corrosion casts followed by light microscopy of tissue sections. Arch Histol Cytol 52:151–172PubMedCrossRefPubMedCentralGoogle Scholar
  166. Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Péault B (2014) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 71(8):1353–1374PubMedCrossRefPubMedCentralGoogle Scholar
  167. Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12(2):195–206PubMedCrossRefPubMedCentralGoogle Scholar
  168. Newgreen DF, Kerr RS, Minichiello J, Warren N (1997) Changes in cell adhesion and extracellular matrix molecules in spontaneous spinal neural tube defects in avian embryos. Teratology 55:195–207PubMedCrossRefPubMedCentralGoogle Scholar
  169. Nichols DH (1981) Neural crest formation in the head of the mouse embryo as observed using a new histological technique. J Embryol Exp Morph 64:105–120PubMedPubMedCentralGoogle Scholar
  170. Nichols DH (1986) Formation and distribution of neural crest mesenchyme to the first pharyngeal arch region of the mouse embryo. Am J Anat 176:221–231PubMedCrossRefPubMedCentralGoogle Scholar
  171. Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harbor Perspectives in Biology 4 (8):a008128-a008128Google Scholar
  172. Nikolova G, Strilic B, Lammert E (2007) The vascular niche and its basement membrane. Trends Cell Biol 17:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  173. Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud P-O, von Deimling A, Wick W, Platten M (2013) Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J Neuroimmunol 265:106–116PubMedCrossRefPubMedCentralGoogle Scholar
  174. Ortega HH, Lorente JA, Salvetti NR (2004a) Immunohistochemical study of intermediate filaments and neuroendocrine marker expression in Leydig cells of laboratory rodents. Anat Histol Embryol 33(5):309–315Google Scholar
  175. Orth J, Weisz J (1980) Development of Δ5-3ß-hydroxysteroid dehydrogenase and glucose-6- phosphatase activity in Leydig cells of the fetal rat testis: a quantitative cytochemical study. Biol Reprod 22:1201–1209PubMedCrossRefPubMedCentralGoogle Scholar
  176. Özen I, Boix J, Paul G (2012) Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin Transl Med 1(1):30PubMedPubMedCentralCrossRefGoogle Scholar
  177. Pacini S, Petrini I (2014) Are MSCs angiogenic cells? New insights on human nestin-positive bone-marrow-derived multipotent cells. Front Cell Dev Biol 2:Article 20. https://doi.org/10.3389/fcell.2014.00020CrossRefGoogle Scholar
  178. Palm T, Nielsen SL, Lassen NA (1983) Vascular recruitment in forearm muscles during exercise. Clin Physiol 3:445–451PubMedCrossRefGoogle Scholar
  179. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494PubMedCrossRefPubMedCentralGoogle Scholar
  180. Paniagua R, Rodriguez MC, Nistal M, Fraile B, Regadera J, Amat P (1988) Changes in surface area and number of Leydig cells in relation to the 6 stages of the cycle of the human seminiferous epithelium. Anat Embryol 178(5):423–427PubMedCrossRefGoogle Scholar
  181. Péault B, Rudnicki M, Torrente Y, Cossu G, Trmblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15:867–877PubMedCrossRefPubMedCentralGoogle Scholar
  182. Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M (2007) A hypothesis for embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia 21:860–867PubMedCrossRefPubMedCentralGoogle Scholar
  183. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M (2008) Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol 36:742–751PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ratajczak MZ, Shin D-M, Liu R, Mierzeiewska K, Ratajczak J, Kucia M, Zuba-Surma EK (2012a) Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation—an update and comparison to other small stem cells isolated from adult tissues. Aging 4:235–246PubMedPubMedCentralCrossRefGoogle Scholar
  185. Ratajczak MZ, Zuba-Surma E, Kucia M, Poniewierska A, Suszynska M, Ratajchak J (2012b) Pluripotent and multipotent stem cells in adult tissues. Adv Med Sci 57:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  186. Ribatti D, Vacca A (2008) Overview of angiogenesis during tumor growth, Chapter 14. In: Figg WD, Folkman J (eds) Angiogenesis. An integrative approach from science to medicine. Springer, New York, NY, pp 161–167Google Scholar
  187. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268PubMedCrossRefPubMedCentralGoogle Scholar
  188. Rolandsson S, Andersson Sjöland A, Brune JC, Li H, Kassem M, Martens F, Westergren A, Eriksson L, Hanson L, Skog I, Bjermer L, Scheding S, Westergren-Thorson G (2014) Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells. BMJ Open Resp Res 1:e000027. https://doi.org/10.1136/bmjresp-2014-00002CrossRefPubMedGoogle Scholar
  189. Rossant J (2001) Stem cells from the mammalian blastocyst. Stem Cells 19:477–482PubMedCrossRefGoogle Scholar
  190. Rouget CMB (1873) Memoiré sur le développment, la structure et les propriétés physiologiques des capillaires sanguins et lymphatiques. Arch Physiol 5:603–661Google Scholar
  191. Rouget CMB (1879) Sur la contractilite des capillaires sanguins. Compt Rend Acad Sci Paris 88:916–918Google Scholar
  192. Rowley JE, Johnson JR (2014) Pericytes in chronic lung disease. Int Arch Allergy Immunol 164:178–188PubMedCrossRefGoogle Scholar
  193. Russell LD, de França LR (1995) Building a testis. Tissue Cell 27:129–147Google Scholar
  194. Sá-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45:327–347PubMedCrossRefGoogle Scholar
  195. Sbanti RM, Li W-J, Nesti LJ, Wang Y, Tuan RS (2007) Adult mesenchymal stem cells: biological properties, characteristics, and application in maxillofacial surgery. J Oral Maxillofac Surg 65:1640–1647CrossRefGoogle Scholar
  196. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 44:1075–1079CrossRefGoogle Scholar
  197. Schulze W, Davidoff MS, Holstein A-F (1987) Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol 115:373–377PubMedCrossRefGoogle Scholar
  198. Shan L-X, Hardy MP (1992) Developmental changes in levels of luteinizing hormone receptor and androgen receptor in rat Leydig cells. Endocrinology 131:1107–1114PubMedCrossRefGoogle Scholar
  199. Shan L-X, Zhu L-J, Bardin CW, Hardy MP (1995) Quantitative analysis of androgen receptor messenger ribonucleic acid in developing Leydig cells and Sertoli cells by in situ hybridization. Endocrinology 136:3856–3862PubMedCrossRefGoogle Scholar
  200. Shan L-X, Bardinb CW, Hardy MP (1997) Immunohistochemical analysis of androgen effects on androgen receptor expression in developing Leydig and Sertoli cells. Endocrinology 138:1259–1266PubMedCrossRefGoogle Scholar
  201. Sharpe RM (1994) Regulation of spermatogenesis. In: Knobil E, Neil JD (eds) The physiology of reproduction, vol 1, 2nd edn. Raven Press, New York, pp 1363–1434Google Scholar
  202. Shen C-N, Burke ZD, Tosh D (2004a) Transdifferentiation, metaplasia and tissue regeneration. Organogenesis 1:36–44PubMedPubMedCentralCrossRefGoogle Scholar
  203. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004b) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340PubMedCrossRefGoogle Scholar
  204. Shen Q, Wang W, Kokovay E, Lin G, Chang S-M, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche-cell interactions. Cell Stem Cell 3:289–300PubMedPubMedCentralCrossRefGoogle Scholar
  205. Shibata H, Ikeda Y, Mukai T, K-i M, Kurihara I, Ando T, Suzuki T, Kobayashi S, Murai M, Saito I, Saruta T (2001) Expression profiles of COUP-TF, DAX-1, and SF-1 in human adrenal gland and adrenocortical tumors: possible implications in steroidogenesis. Mol Gen Metabol 74:206–216CrossRefGoogle Scholar
  206. Shyamala K, Yanduri S, Girish HC, Murgod S (2015) Neural crest: the fourth germ layer. J Oral Maxillofac Pathol 19(2):221–229PubMedPubMedCentralCrossRefGoogle Scholar
  207. Sild M, Rithazer ES (2011) Radial glía: progenitor, pathway, and partner. Neuroscience 17(3):288–302CrossRefGoogle Scholar
  208. Sims DE (1986) The pericyte—a review. Tiss Cell 18:153–174CrossRefGoogle Scholar
  209. Skinner MK, Tung PS, Fritz IB (1985) Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J Cell Biol 100:1941–1947PubMedCrossRefGoogle Scholar
  210. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462PubMedCrossRefGoogle Scholar
  211. Soncin F, Ward CM (2011) The function of E-cadherin in stem cell pluripotency and self- renewal. Genes 2:229–259PubMedPubMedCentralCrossRefGoogle Scholar
  212. Spence SG, Poole TJ (1994) Developing blood vessels and associated extracellular matrix as substrates for neural crest migration in Japanese quail, Coturnix coturnix japonica. Int J Dev Biol 38:85–98PubMedGoogle Scholar
  213. Stanley EL, Johanston DS, Fan J, Papadopoulos V, Chen H, Ge RS, Zirkin BR, Jelinsky SA (2011) Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells. Biol Reprod 85:1161–1166PubMedPubMedCentralCrossRefGoogle Scholar
  214. Stanley E, Lin C-Y, Jin S, Liu J, Sottas CM, Ge R, Zirkin BR, Chen H (2012) Identification, prtoliferation, and differentiation of adult Leydig stem cells. Endocrinology 153:5002–5010PubMedPubMedCentralCrossRefGoogle Scholar
  215. Suzuki F, Nagano T (1986) Microvasculature of the human testis and excurrent duct system. Resin-casting and scanning electron-microscopic studies. Cell Tissue Res 243:79–89PubMedCrossRefGoogle Scholar
  216. Svingen T, Koopman P (2013) Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev 27:2409–2426PubMedPubMedCentralCrossRefGoogle Scholar
  217. Takamoto N (2005) COUP-TFII is essential for radial and anteroposterior patterning of the stomach. Development 132 (9):2179–2189Google Scholar
  218. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586PubMedPubMedCentralCrossRefGoogle Scholar
  219. Tavazoie M, Van der Veke L, Silva-Varga V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288PubMedCrossRefGoogle Scholar
  220. Teerds K (1996) Regeneration of Leydig cells after depletion by EDS: a model for postnatal Leydig cell regeneration. In: Payne AH, Hardy MP, Russel LD (eds) The Leydig cell. Cache River, Vienna, pp 203–219Google Scholar
  221. Teerds K, Rijntjes E (2007) Dynamics of Leydig cell regeneration after EDS. A model for postnatal Leydig cell development. In: Payne AH, Hardy MP (eds) Contemporary endocrinology: the Leydig cell in health and disease. Humana Press, Totowa, NJ, pp 91–116CrossRefGoogle Scholar
  222. Teerds KJ, de Boer-Brouwer M, Dorrington JH, Balvers M, Ivell R (1999) Identification of markers for precursor and Leydig cell differentiation in the adult rat testis following ethane dimethyl sulphonate administration. Biol Reprod 60:1437–1445PubMedCrossRefGoogle Scholar
  223. Teerds KJ, Rijntjes E, Veldhuizen-Tsoerkan MB, Rommerts FFG, de Boer-Brouwer M (2007) The development of rat Leydig cell progenitors in vitro: how essential is luteinizing hormone? J Endocrinol 194:579–593Google Scholar
  224. Thiery JP, Delouvee A, Gallin W, Cunningham B, Edelman G (1984) Ontogenetic expression of cell adhesion molecules: L-CAM is found in epithelia derived from the three primary germ layers. Dev Biol 102:61–78PubMedCrossRefGoogle Scholar
  225. Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Rev 31:42–57PubMedCrossRefGoogle Scholar
  226. Tosh D, Slack JMW (2002) How cells change their phenotype. Nat Rev 3:187–194CrossRefGoogle Scholar
  227. Trainor PA, Melton KR, Manzanares M (2003) Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol 47: 541–553Google Scholar
  228. Trainor PA (2005) Spezification and pattering of neural crest cells during craniofacial development. Brain Behav Evol 66: 266–280Google Scholar
  229. Traktuev DO, Merferld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL (2008) A population of multipotent CD-34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85PubMedCrossRefGoogle Scholar
  230. Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser- Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA (2016) Brain and retinal pericytes: origin, function and role. Front Cell Neurosci 10:20PubMedPubMedCentralCrossRefGoogle Scholar
  231. van Dijk CGM, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ, Verhaar MC, Cheng C (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89PubMedCrossRefGoogle Scholar
  232. Vimtrup B (1922) Beiträge zur Anatomie der Capillaren. I. Über contractile Elemente in der Gefäßwand der Blutcapillaren. Anat Embryol 65:150–182Google Scholar
  233. Wang L, Kamath A, Frye J, Iwamoto GA, Chun JL, Berry SE (2012) Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stem Cells Dev 7:1069–1189CrossRefGoogle Scholar
  234. Weerasooriya TR, Yamamoto T (1985) Three-dimensional organization of the vasculature of the rat spermatic cord and testis. Cell Tissue Res 241:317–323PubMedCrossRefGoogle Scholar
  235. Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS (2002) Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res Dev Brain Res 139:9–17PubMedCrossRefGoogle Scholar
  236. Welsh M, Saunders PT, Atanassova N, Sharpe R, Smith LB (2009) Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 23:4218–4230PubMedPubMedCentralCrossRefGoogle Scholar
  237. Welsh M, Sharpe RM, Moffat L, Atanassova N, Saunders PTK, Kilter S, Bergh A, Smith LB (2010) Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics. PLoS One 5(10):e13632PubMedPubMedCentralCrossRefGoogle Scholar
  238. Welsh M, Moffat L, Belling K, de França LR, Segatelli TM, Saunders PTK, Sharpe RM, Smith LB (2011) Androgen receptor signaling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells. Int J Androl 35:25–40PubMedCrossRefGoogle Scholar
  239. Weston JA, Thiery JP (2015) Pentimento: neural crest and the origin of mesectoderm. Dev Biol 401:37–61PubMedCrossRefGoogle Scholar
  240. Weston JA, Yoshida H, Robinson V, Nishikawa S, Fraser ST, Nishikawa S (2004) Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis. Dev Dyn 229:118–130PubMedCrossRefGoogle Scholar
  241. Wong SP, Rowley JE, Redpath AN, Tilman JD, Fellous TG, Johnson JR (2015) Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol Ther 151:107–120. https://doi.org/10.1016/j.pharmthera.2015.03.006CrossRefPubMedGoogle Scholar
  242. Yao HH-C, Barsoum I (2007) Fetal Leydig cells. Origin, regulation, and function. In: Payne AH, Hardy MP (eds) Contemporary endocrinology: The Leydig Cell in Health and Disease. Humana Press, Totowa, pp. 47-54Google Scholar
  243. Ye L, Li X, Li L, Chen H, Ge R-S (2017) Insights into the development of the adult Leydig cell lineage from stem Leydig cells. Front Physiol 8:430PubMedPubMedCentralCrossRefGoogle Scholar
  244. Yoshida S, Sukeno M, Nabeshima Y-I (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726PubMedCrossRefGoogle Scholar
  245. Yoshimizu T, Obinata M, Matsui Y (2001) Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development 128: 481–490Google Scholar
  246. You LR, Lin F-J, Lee CT, DeMayo FJ, Tsai M-J, Tsai SY (2005) Suppression of notch signaling by COUP-TFII transcription factor regulates vein identity. Nature 435:98–104PubMedCrossRefGoogle Scholar
  247. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157PubMedCrossRefGoogle Scholar
  248. Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Péault B, Rubin JP, Donnenberg AD (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77A:22–30Google Scholar
  249. Zimmerlin L, Donnenberg VS, Donnenberg AD (2012) Pericytes: A universal adult tissue stem cell? Cytometry A 81A: 12-14 doi:10.1002/cyto.a21168Google Scholar
  250. Zimmermann KW (1923) Der feinere Bau der Blutcapillaren. Zeitschr f d ges Anat I Abt 68:29–109Google Scholar
  251. Zouani OF, Lei Y, Durrieu M-C (2013) Pericytes, stem-cell-like cells, but not mesenchymal stem cells are recruited to support microvascular tube stabilization. Small 9:3070–3075PubMedCrossRefGoogle Scholar
  252. Zwaka TP, Thomson JA (2005) A germ cell origin of embryonic stem cells? Development 132:227–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University Medical Center Hamburg-Eppendorf, Hamburg Museum of Medical HistoryHamburgGermany

Personalised recommendations