Advertisement

Pericytes in the Retina

  • Andrea TrostEmail author
  • Daniela Bruckner
  • Francisco J. Rivera
  • Herbert A. Reitsamer
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

Pericytes (PCs) are specialized cells located abluminal of endothelial cells (ECs) on capillaries, embedded within the same basement membrane. They are essential regulators of vascular development, remodeling, and blood-retina-barrier (BRB) tightness and are therefore important components to maintain tissue homeostasis. The perivascular localization and expression of contractile proteins suggest that PCs participate in capillary blood flow regulation and neurovascular coupling. Due to their ability to differentiate into various cell types in vitro, they are regarded as potential cells for tissue repair and therapeutic approaches in regenerative medicine. Altered function or loss of PCs is associated with a multitude of CNS diseases, including diabetic retinopathy (DR). In this chapter, we will provide a short overview of retinal vascular development, the origin of PCs, and focus on PCs in retinopathy of prematurity (ROP) and in the diabetic retina. Further, animal models to study the fate of PCs and the potential role of (retinal) PCs in regeneration and wound healing will be discussed.

Keywords

Pericyte Retina Origin Pericyte marker PDGFRb NG2 tbx18 Diabetic retinopathy (DR) Retinopathy of prematurity (ROP) Wound healing Regeneration 

Abbreviations

Angs

Angiopoietins

BBB

Blood-brain barrier

BM

Bone marrow

BRB

Blood-retina barrier

CNS

Central nervous system

DME

Diabetic macular edema

DR

Diabetic retinopathy

ECs

Endothelial cells

INL

Inner nuclear layer

IPL and OPL

Inner and outer plexiform layer

MSCs

Mesenchymal stem cells

NG2

Neuron-glial antigen 2

NVU

Neurovascular unit

ON

Optic nerve

ONL

Outer nuclear layer

P0

Postnatal day 0

PCs

Pericytes

PDGFRb

PDGF-receptor beta

RPE

Retinal pigment epithelial cells

tbx 18

T-box family transcription factor 18

TGF-b

Transforming growth factor beta

VEGF

Vascular endothelial growth factor

vSMCs

Vascular smooth muscle cells

References

  1. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215PubMedCrossRefGoogle Scholar
  2. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561CrossRefGoogle Scholar
  3. Askie LM, Brocklehurst P, Darlow BA, Finer N, Schmidt B, Tarnow-Mordi W, Ne OCG (2011) NeOProM: neonatal oxygenation prospective Meta-analysis collaboration study protocol. BMC Pediatr 11:6PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 52:1156–1163PubMedPubMedCentralCrossRefGoogle Scholar
  5. Behl Y, Krothapalli P, Desta T, DiPiazza A, Roy S, Graves DT (2008) Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol 172:1411–1418PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427PubMedPubMedCentralCrossRefGoogle Scholar
  7. Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15:215–228PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bhatwadekar AD, Guerin EP, Jarajapu YP, Caballero S, Sheridan C, Kent D, Kennedy L, Lansang MC, Ruscetti FW, Pepine CJ, Higgins PJ, Bartelmez SH, Grant MB (2010) Transient inhibition of transforming growth factor-beta1 in human diabetic CD34+ cells enhances vascular reparative functions. Diabetes 59:2010–2019PubMedPubMedCentralCrossRefGoogle Scholar
  9. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bruckner D, Kaser-Eichberger A, Bogner B, Runge C, Schrödl F, Strohmaier C, Silva ME, Zaunmair P, Couillard-Despres S, Aigner L, Rivera FJ, Reitsamer HA, Trost A (2018) Retinal pericytes: characterization of vascular development-dependent induction time points in an inducible NG2 reporter mouse model. Curr Eye Res 43(10):1274–1285. https://doi.org/10.1080/02713683.2018.1493130. Epub 2018 Jul 18. PMID:29939774.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–967PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chan-Ling T, Tout S, Hollander H, Stone J (1992) Vascular changes and their mechanisms in the feline model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 33:2128–2147PubMedPubMedCentralGoogle Scholar
  13. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen WC, Baily JE, Corselli M, Diaz ME, Sun B, Xiang G, Gray GA, Huard J, Peault B (2015) Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33:557–573PubMedPubMedCentralCrossRefGoogle Scholar
  15. Choi SH, Chung M, Park SW, Jeon NL, Kim JH, Yu YS (2018) Relationship between Pericytes and endothelial cells in retinal neovascularization: a histological and immunofluorescent Study of retinal angiogenesis. Korean J Ophthalmol 32:70–76PubMedPubMedCentralCrossRefGoogle Scholar
  16. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRefGoogle Scholar
  17. Cuervo H, Pereira B, Nadeem T, Lin M, Lee F, Kitajewski J, Lin CS (2017) PDGFRbeta-P2A-CreER(T2) mice: a genetic tool to target pericytes in angiogenesis. Angiogenesis 20:655–662PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cuttler AS, LeClair RJ, Stohn JP, Wang Q, Sorenson CM, Liaw L, Lindner V (2011) Character-ization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries. Genesis 49:673–680PubMedPubMedCentralCrossRefGoogle Scholar
  19. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499PubMedCrossRefGoogle Scholar
  21. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267PubMedCrossRefGoogle Scholar
  22. Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 26:613–624PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43:3500–3510PubMedPubMedCentralGoogle Scholar
  25. Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21:4307–4316PubMedPubMedCentralCrossRefGoogle Scholar
  26. Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR (2017) Diabetic retinopathy: breaking the barrier. Pathophysiology 24:229–241PubMedPubMedCentralCrossRefGoogle Scholar
  27. Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068PubMedGoogle Scholar
  28. Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F (2016) Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Research and Therapy 7:42PubMedCrossRefPubMedCentralGoogle Scholar
  29. Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232PubMedCrossRefPubMedCentralGoogle Scholar
  30. Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58PubMedCrossRefPubMedCentralGoogle Scholar
  31. Frank RN, Turczyn TJ, Das A (1990) Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci 31:999–1007PubMedPubMedCentralGoogle Scholar
  32. Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43:522–527PubMedPubMedCentralGoogle Scholar
  33. Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10:77–88PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gage PJ, Rhoades W, Prucka SK, Hjalt T (2005) Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci 46:4200–4208PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N (2015) Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 78:887–900PubMedCrossRefPubMedCentralGoogle Scholar
  37. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242PubMedCrossRefPubMedCentralGoogle Scholar
  38. Guimaraes-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, Rockenstein E, Masliah E, Peterson KL, Stallcup WB, Chen J, Evans SM (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–359.e5PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hammes HP (2005) Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res 37(Suppl 1):39–43PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–3112PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hansen-Pupp I, Hellstrom A, Hamdani M, Tocoian A, Kreher NC, Ley D, Hallberg B (2017) Continuous longitudinal infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants: evaluation of feasibility in a phase II study. Growth Hormon IGF Res 36:44–51CrossRefGoogle Scholar
  44. Heglind M, Cederberg A, Aquino J, Lucas G, Ernfors P, Enerback S (2005) Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight. Mol Cell Biol 25:5616–5625PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hernandez C, Dal Monte M, Simo R, Casini G (2016) Neuroprotection as a therapeutic target for diabetic retinopathy. J Diabetes Res 2016:9508541PubMedPubMedCentralCrossRefGoogle Scholar
  46. Herrmann M, Bara JJ, Sprecher CM, Menzel U, Jalowiec JM, Osinga R, Scherberich A, Alini M, Verrier S (2016) Pericyte plasticity—comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. Eur Cell Mater 31:236–249PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the Normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary Pericytes. Neuron 87:95–110PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hoffmann J, Feng Y, vom Hagen F, Hillenbrand A, Lin J, Erber R, Vajkoczy P, Gourzoulidou E, Waldmann H, Giannis A, Wolburg H, Shani M, Jaeger V, Weich HA, Preissner KT, Hoffmann S, Deutsch U, Hammes HP (2005) Endothelial survival factors and spatial completion, but not pericyte coverage of retinal capillaries determine vessel plasticity. FASEB J 19:2035–2036PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hong CS, Saint-Jeannet JP (2005) Sox proteins and neural crest development. Semin Cell Dev Biol 16:694–703PubMedCrossRefPubMedCentralGoogle Scholar
  50. Huang H, Gandhi JK, Zhong X, Wei Y, Gong J, Duh EJ, Vinores SA (2011) TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest Ophthalmol Vis Sci 52:1336–1344PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hughes S, Gardiner T, Baxter L, Chan-Ling T (2007) Changes in pericytes and smooth muscle cells in the kitten model of retinopathy of prematurity: implications for plus disease. Invest Ophthalmol Vis Sci 48:1368–1379PubMedCrossRefPubMedCentralGoogle Scholar
  52. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ingram DA, Lien IZ, Mead LE, Estes M, Prater DN, Derr-Yellin E, DiMeglio LA, Haneline LS (2008) In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function. Diabetes 57:724–731PubMedCrossRefPubMedCentralGoogle Scholar
  54. Ip MS, Domalpally A, Sun JK, Ehrlich JS (2015) Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology 122:367–374PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jadeja S, Mort RL, Keighren M, Hart AW, Joynson R, Wells S, Potter PK, Jackson IJ (2013) A CNS-specific hypomorphic Pdgfr-beta mutant model of diabetic retinopathy. Invest Ophthalmol Vis Sci 54:3569–3578PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kern TS, Barber AJ (2008) Retinal ganglion cells in diabetes. J Physiol 586:4401–4408PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kielczewski JL, Hu P, Shaw LC, Li Calzi S, Mames RN, Gardiner TA, McFarland E, Chan-Ling T, Grant MB (2011) Novel protective properties of IGFBP-3 result in enhanced pericyte ensheathment, reduced microglial activation, increased microglial apoptosis, and neuronal protection after ischemic retinal injury. Am J Pathol 178:1517–1528PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kim JH, Kim JH, Yu YS, Kim DH, Kim KW (2009) Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res 87:653–659PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kim JM, Hong KS, Song WK, Bae D, Hwang IK, Kim JS, Chung HM (2016a) Perivascular progenitor cells derived from human embryonic stem cells exhibit functional characteristics of Pericytes and improve the retinal vasculature in a rodent model of diabetic retinopathy. Stem Cells Transl Med 5:1268–1276PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kim KS, Park JM, Kong T, Kim C, Bae SH, Kim HW, Moon J (2016b) Retinal angiogenesis effects of TGF-beta1 and paracrine factors secreted from human placental stem cells in response to a pathological environment. Cell Transplant 25:1145–1157PubMedCrossRefPubMedCentralGoogle Scholar
  61. Klaassen I, Van Noorden CJ, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kokovay E, Li L, Cunningham LA (2006) Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26:545–555PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kolb H (1995) Simple anatomy of the retina. In: Kolb H, Fernandez E, Nelson R (eds) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City, UTGoogle Scholar
  64. Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442:78–88PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66PubMedCrossRefPubMedCentralGoogle Scholar
  66. Krebs I, Schmetterer L, Boltz A, Told R, Vecsei-Marlovits V, Egger S, Schonherr U, Haas A, Ansari-Shahrezaei S, Binder S (2013) A randomised double-masked trial comparing the visual outcome after treatment with ranibizumab or bevacizumab in patients with neovascular age-related macular degeneration. Br J Ophthalmol 97:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB, Chaqour B (2017) Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 7:1405PubMedPubMedCentralCrossRefGoogle Scholar
  68. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887PubMedCrossRefPubMedCentralGoogle Scholar
  69. Liegl R, Hellstrom A, Smith LE (2016) Retinopathy of prematurity: the need for prevention. Eye Brain 8:91–102PubMedPubMedCentralGoogle Scholar
  70. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245PubMedCrossRefGoogle Scholar
  71. Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840PubMedPubMedCentralCrossRefGoogle Scholar
  72. Liu J, Willet SG, Bankaitis ED, Xu Y, Wright CV, Gu G (2013) Non-parallel recombination limits Cre-LoxP-based reporters as precise indicators of conditional genetic manipulation. Genesis 51:436–442PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lofqvist C, Niklasson A, Engstrom E, Friberg LE, Camacho-Hubner C, Ley D, Borg J, Smith LE, Hellstrom A (2009) A pharmacokinetic and dosing study of intravenous insulin-like growth factor-I and IGF-binding protein-3 complex to preterm infants. Pediatr Res 65:574–579PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lutty GA, McLeod DS (2017) Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Prog Retin Eye Res 62:58–76PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mackie AR, Losordo DW (2011) CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex Heart Inst J 38:474–485PubMedPubMedCentralGoogle Scholar
  76. Matsushita T, Lankford KL, Arroyo EJ, Sasaki M, Neyazi M, Radtke C, Kocsis JD (2015) Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells. Exp Neurol 267:152–164PubMedCrossRefPubMedCentralGoogle Scholar
  77. Medina RJ, O'Neill CL, Humphreys MW, Gardiner TA, Stitt AW (2010) Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Invest Ophthalmol Vis Sci 51:5906–5913PubMedCrossRefPubMedCentralGoogle Scholar
  78. Mendel TA, Clabough EB, Kao DS, Demidova-Rice TN, Durham JT, Zotter BC, Seaman SA, Cronk SM, Rakoczy EP, Katz AJ, Herman IM, Peirce SM, Yates PA (2013) Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One 8:e65691PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, Kawahara M, Taguchi A, Matsuyama T (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33:1962–1974PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nakata M, Nakagomi T, Maeda M, Nakano-Doi A, Momota Y, Matsuyama T (2017) Induction of perivascular neural stem cells and possible contribution to neurogenesis following transient brain ischemia/reperfusion injury. Transl Stroke Res 8:131–143PubMedCrossRefPubMedCentralGoogle Scholar
  81. Newman DK (2010) Surgical management of the late complications of proliferative diabetic retinopathy. Eye (Lond) 24:441–449CrossRefGoogle Scholar
  82. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-a is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171:53–67PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A (2017) Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight 2:e90905PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ozerdem U, Alitalo K, Salven P, Li A (2005) Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci 46:3502–3506PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ozerdem U, Stallcup WB (2004) Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7:269–276PubMedPubMedCentralCrossRefGoogle Scholar
  87. Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY (2017) Plastic roles of pericytes in the blood-retinal barrier. Nat Commun 8:15296PubMedPubMedCentralCrossRefGoogle Scholar
  88. Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renstrom E, Svensson M, Haegerstrand A, Brundin P (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7:e35577PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57:2495–2502PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pfister F, Wang Y, Schreiter K, vom Hagen F, Altvater K, Hoffmann S, Deutsch U, Hammes HP, Feng Y (2010) Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia. Acta Diabetol 47:59–64PubMedCrossRefPubMedCentralGoogle Scholar
  91. Pollack A, Staurenghi G, Sager D, Mukesh B, Reiser H, Singh RP (2016) Prospective randomised clinical trial to evaluate the safety and efficacy of nepafenac 0.1% treatment for the prevention of macular oedema associated with cataract surgery in patients with diabetic retinopathy. Br J Ophthalmol 101:423–427PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276PubMedPubMedCentralCrossRefGoogle Scholar
  94. Saito Y, Geisen P, Uppal A, Hartnett ME (2007) Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol Vis 13:840–853PubMedPubMedCentralGoogle Scholar
  95. Sankar MJ, Sankar J, Chandra P (2018) Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev 1:CD009734PubMedPubMedCentralGoogle Scholar
  96. Santos GSP, Prazeres P, Mintz A, Birbrair A (2017) Role of pericytes in the retina. Eye (Lond) 32:483–486CrossRefGoogle Scholar
  97. Schallek J, Geng Y, Nguyen H, Williams DR (2013) Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthalmol Vis Sci 54:8237–8250PubMedPubMedCentralCrossRefGoogle Scholar
  98. Selvam S, Kumar T, Fruttiger M (2017) Retinal vasculature development in health and disease. Prog Retin Eye Res 63:1–19PubMedCrossRefPubMedCentralGoogle Scholar
  99. Sfikakis PP, Grigoropoulos V, Emfietzoglou I, Theodossiadis G, Tentolouris N, Delicha E, Katsiari C, Alexiadou K, Hatziagelaki E, Theodossiadis PG (2010) Infliximab for diabetic macular edema refractory to laser photocoagulation: a randomized, double-blind, placebo-controlled, crossover, 32-week study. Diabetes Care 33:1523–1528PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shaw LC, Neu MB, Grant MB (2011) Cell-based therapies for diabetic retinopathy. Curr Diab Rep 11:265–274PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sheikh AQ, Misra A, Rosas IO, Adams RH, Greif DM (2015) Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med 7:308ra159PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038PubMedCrossRefPubMedCentralGoogle Scholar
  103. Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14:153–166PubMedCrossRefPubMedCentralGoogle Scholar
  104. Simon C, Lickert H, Gotz M, Dimou L (2012) Sox10-iCreERT2 : a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis 50:506–515PubMedCrossRefPubMedCentralGoogle Scholar
  105. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D'Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111PubMedPubMedCentralGoogle Scholar
  106. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879PubMedPubMedCentralCrossRefGoogle Scholar
  107. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8:1888–1896PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tallquist MD, French WJ, Soriano P (2003) Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 1:E52PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tidhar A, Reichenstein M, Cohen D, Faerman A, Copeland NG, Gilbert DJ, Jenkins NA, Shani M (2001) A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells. Dev Dyn 220:60–73PubMedCrossRefPubMedCentralGoogle Scholar
  111. Trinh TLP, Li Calzi S, Shaw LC, Yoder MC, Grant MB (2016) Promoting vascular repair in the retina: can stem/progenitor cells help? Eye Brain 8:113–122PubMedPubMedCentralGoogle Scholar
  112. Trost A, Schroedl F, Lange S, Rivera FJ, Tempfer H, Korntner S, Stolt CC, Wegner M, Bogner B, Kaser-Eichberger A, Krefft K, Runge C, Aigner L, Reitsamer HA (2013) Neural crest origin of retinal and choroidal pericytes. Invest Ophthalmol Vis Sci 54:7910–7921PubMedCrossRefPubMedCentralGoogle Scholar
  113. Vanhaesebrouck S, Daniels H, Moons L, Vanhole C, Carmeliet P, De Zegher F (2009) Oxygen-induced retinopathy in mice: amplification by neonatal IGF-I deficit and attenuation by IGF-I administration. Pediatr Res 65:307–310PubMedCrossRefPubMedCentralGoogle Scholar
  114. Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wang D, Wu F, Yuan H, Wang A, Kang GJ, Truong T, Chen L, McCallion AS, Gong X, Li S (2017) Sox10(+) cells contribute to vascular development in multiple organs-brief report. Arterioscler Thromb Vasc Biol 37:1727–1731PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wilkinson-Berka JL, Babic S, De Gooyer T, Stitt AW, Jaworski K, Ong LG, Kelly DJ, Gilbert RE (2004) Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol 164:1263–1273PubMedPubMedCentralCrossRefGoogle Scholar
  117. Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32PubMedPubMedCentralCrossRefGoogle Scholar
  118. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wisniewska-Kruk J, Klaassen I, Vogels IM, Magno AL, Lai CM, Van Noorden CJ, Schlingemann RO, Rakoczy EP (2014) Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Exp Eye Res 122:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  120. Xiao A, Zhou Q, Shao Y, Zhong HF (2017) Effect of intravitreal injection of ranibizumab on retinal ganglion cells and microvessels in the early stage of diabetic retinopathy in rats with streptozotocin-induced diabetes. Exp Ther Med 13:3360–3368PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xu J, Nie X, Cai X, Cai CL, Xu PX (2014) Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev Biol 391:17–31PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, Koo BN, Kita S, O'Donnell E, Osawa T, Takahashi H, Takano KI, Dohmoto M, Sugimori M, Usui I, Watanabe Y, Hatakeyama N, Iwamoto T, Komuro I, Takatsu K, Tobe K, Niida S, Matsuda N, Shibuya M, Sasahara M (2017) A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 7:3855PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yamazaki T, Nalbandian A, Uchida Y, Li W, Arnold TD, Kubota Y, Yamamoto S, Ema M, Mukouyama YS (2017) Tissue myeloid progenitors differentiate into Pericytes through TGF-beta Signaling in developing skin vasculature. Cell Rep 18:2991–3004PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BE, Klein R, Krishnaiah S, Mayurasakorn K, O’Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY, Meta-Analysis for Eye Disease Study Group (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zehendner CM, Wedler HE, Luhmann HJ (2013) A novel in vitro model to study pericytes in the neurovascular unit of the developing cortex. PLoS One 8:e81637PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Trost
    • 1
    Email author
  • Daniela Bruckner
    • 1
  • Francisco J. Rivera
    • 2
    • 3
  • Herbert A. Reitsamer
    • 1
  1. 1.Department of OphthalmologyUniversity Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALKSalzburgAustria
  2. 2.Institute of Mol. Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University SalzburgSalzburgAustria
  3. 3.Laboratory of Stem Cells and NeuroregenerationInstitute of Anatomy, Histology and Pathology, Faculty of Medicine and Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdiviaChile

Personalised recommendations