Advertisement

Symmetry of Anonymous Robots

  • Yukiko Yamauchi
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

Symmetry of anonymous mobile robots imposes many impossibilities. We focus on the formation problem that requires the robots to form a target pattern. We consider the robots moving in the three-dimensional space and the two-dimensional space (3D and 2D space, respectively) and introduce the notion of symmetricity of a set of points that represents the set of rotation groups that the robots cannot resolve. However, the symmetricity does not always match the rotational symmetry of geometric positions of the robots. We demonstrate that the robots are capable of breaking symmetry by their movement in some cases. The goal of this chapter is to present the following characterization of formable patterns; anonymous synchronous mobile robots in 3D space or 2D space can form a target pattern from an initial configuration if and only if the symmetricity of an initial configuration is a subset of the symmetricity of the target pattern.

Keywords

Symmetry Rotation group Pattern formation problem Plane formation problem Symmetry breaking 

Notes

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP18H03202.

References

  1. 1.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15(5), 818–828 (1999).  https://doi.org/10.1109/70.795787CrossRefGoogle Scholar
  2. 2.
    Armstrong, M.A.: Groups and Symmetry. Springer, New York (1988).  https://doi.org/10.1007/978-1-4757-4034-9CrossRefzbMATHGoogle Scholar
  3. 3.
    Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous embedded pattern formation without orientation. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 85–98. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53426-7_7CrossRefGoogle Scholar
  4. 4.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012).  https://doi.org/10.1137/100796534MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clement, J., Défago, X., Potop-Butucaru, M.G., Izumi, T., Messika, S.: The cost of probabilistic agreement in oblivious robot networks. Inf. Process. Lett. 110(11), 431–438 (2010).  https://doi.org/10.1016/j.ipl.2010.04.006MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cromwell, P.R.: Polyhedra. University Press, Cambridge (1997)zbMATHGoogle Scholar
  7. 7.
    Das, S., Flocchini, P., Prencipe, G., Santoro, N.: Synchronized dancing of oblivious chameleons. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 113–124. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07890-8_10CrossRefGoogle Scholar
  8. 8.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequence of geometric patterns with oblivious mobile robots. Distrib. Comput. 28, 131–145 (2015).  https://doi.org/10.1007/s00446-014-0220-9MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape formation by programmable particles. In: Proceedings of the 21st International Conference on Principles of Distributed Systems (OPODIS 2017), pp. 31:1–31:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017).  https://doi.org/10.4230/LIPIcs.OPODIS.2017.31
  10. 10.
    Dieudonné, Y., Petit, F.: Robots and demons (the code of the origins). In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 108–119. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72914-3_11CrossRefGoogle Scholar
  11. 11.
    Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 267–281. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_26CrossRefGoogle Scholar
  12. 12.
    Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2017).  https://doi.org/10.1007/s00446-016-0291-xMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005).  https://doi.org/10.1016/j.tcs.2005.01.001MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407, 412–447 (2008).  https://doi.org/10.1016/j.tcs.2008.07.026MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through optimum matching by oblivious CORDA robots. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17653-1_1CrossRefGoogle Scholar
  16. 16.
    Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015).  https://doi.org/10.1137/140958682MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Izumi, T., Potop-Butucaru, M.G., Tixeuil, S.: Connectivity-preserving scattering of mobile robots with limited visibility. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 319–331. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16023-3_27CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Yamauchi, Y., Kijima, S., Yamashita, M.: Team assembling problem for asynchronous heterogeneous mobile robots. Theor. Comput. Sci. 721, 27–41 (2018).  https://doi.org/10.1016/j.tcs.2018.01.009MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999).  https://doi.org/10.1137/S009753979628292XMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tomita, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots without chirality. In: Proceedings of the 21st International Conference on Principles of Distributed Systems (OPODIS 2017), pp. 13:1–13:17 (2017).  https://doi.org/10.4230/LIPIcs.OPODIS.2017.13
  21. 21.
    Uehara, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by semi-synchronous robots in the three dimensional Euclidean space. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 383–398. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_30CrossRefGoogle Scholar
  22. 22.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: part I-characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996).  https://doi.org/10.1109/71.481599CrossRefGoogle Scholar
  23. 23.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010).  https://doi.org/10.1016/j.tcs.2010.01.037MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three dimensional Euclidean space. J. ACM 64(3), 16:1–16:43 (2017).  https://doi.org/10.1145/3060272MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yamauchi, Y., Uehara, T., Yamashita, M.: Brief announcement: pattern formation problem for synchronous mobile robots in the three dimensional Euclidean space. In: Proceedings of the 35th ACM Symposium on Principles of Distributed Computing (PODC 2016), pp. 447–449. ACM (2016).  https://doi.org/10.1145/2933057.2933063
  26. 26.
    Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 201–212. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03578-9_17CrossRefGoogle Scholar
  27. 27.
    Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asynchronous oblivious mobile robots. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 137–151. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations