Advertisement

Dangerous Graphs

  • Euripides MarkouEmail author
  • Wei Shi
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

Anomalies and faults are inevitable in computer networks, today more than ever before. This is due to the large scale and dynamic nature of the networks used to process big data and to the ever-increasing number of ad-hoc devices. Beyond natural faults and anomalies occurring in a network, threats proceeding from attacks conducted by malicious intruders must be considered. Consequently, there is often a need to quickly isolate and even repair a fault in a network when it appears. Furthermore, despite the presence in a network of faults stemming from malicious entities, we need to identify the latter and their behaviours, and develop protocols resilient to their attacks. Thus, defining models to capture the dangers inherent to various faults, anomalies and threats in a network and studying such threats, has become increasingly important and popular.

Threats in networks can be of two kinds: either mobile or stationary. A malicious mobile process can move along the network, whereas a stationary harmful process resides in a host. One of the most studied models for stationary harmful processes is the black hole, which was introduced by Dobrev, Flocchini, Prencipe and Santoro in 2001. A black hole models a network node in which a destructive process deletes any visiting agent or incoming data upon arrival, without leaving any observable trace. Conversely, a network may face one or more malicious mobile processes infecting one or more nodes. Given both kinds of threats, a first crucial task consists in searching for and reporting as quickly as possible the location all faulty nodes while using a minimum number of mobile agents. In general, the main issue is to identify the minimal hypotheses under which faulty nodes can be found. This problem has been investigated in both asynchronous and synchronous networks. A corollary task is to make sure that the protocols designed for solving problems such as gathering and transferring data still work despite the presence of one or more faulty nodes.

In this chapter, we review the state-of-the-art of research pertaining to the presence of faulty nodes in a network. We discuss different models in synchronous and asynchronous networks and for different communication and computation capabilities of the agents. We also address relevant computational issues and present algorithmic techniques and impossibility results.

Keywords

Distributed algorithms Fault tolerance Black hole search Networks Graph exploration Mobile agents Computational complexity Deterministic finite automata 

References

  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Agrawal, P., Ghosh, R.K., Das, S.K.: Cooperative black and gray hole attacks in mobile ad hoc networks. In: Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication, ICUIMC 2008, pp. 310–314. ACM, New York (2008)Google Scholar
  3. 3.
    Al-Shurman, M., Yoo, S.-M., Park, S.: Black hole attack in mobile ad hoc networks. In: Proceedings of the 42nd Annual Southeast Regional Conference, pp. 96–97. ACM (2004)Google Scholar
  4. 4.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Asaka, M., Okazawa, S., Taguchi, A., Goto, S.: A method of tracing intruders by use of mobile agents. In: Proceedings of of 9th Annual Conference of the Internet Society (1999). http://www.isoc.org/
  6. 6.
    Balamohan, B., Dobrev, S., Flocchini, P., Santoro, N.: Asynchronous exploration of an unknown anonymous dangerous graph with O(1) pebbles. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 279–290. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31104-8_24CrossRefGoogle Scholar
  7. 7.
    Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Improving the optimal bounds for black hole search in rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 198–209. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22212-2_18CrossRefGoogle Scholar
  8. 8.
    Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Time optimal algorithms for black hole search in rings. Discret. Math. Algorithms Appl. 3(4), 457–471 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved periodic data retrieval in asynchronous rings with a faulty host. Theor. Comput. Sci. 608, 231–254 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Banerjee, S.: Detection/removal of cooperative black and gray hole attack in mobile ad-hoc networks. In: Proceedings of the World Congress on Engineering and Computer Science, pp. 22–24 (2008)Google Scholar
  11. 11.
    Banerjee, S., Sardar, M., Majumder, K.: AODV based black-hole attack mitigation in MANET. In: Satapathy, S., Udgata, S., Biswal, B. (eds.) FICTA 2013. AISC, vol. 247, pp. 345–352. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-02931-3_39CrossRefGoogle Scholar
  12. 12.
    Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proceedings of 14th ACM Symposium on Parallel Algorithms and Architectures, pp. 200–209 (2002)Google Scholar
  13. 13.
    Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 269–278. ACM (1998)Google Scholar
  14. 14.
    Bender, M.A., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 75–85 (1994)Google Scholar
  15. 15.
    Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 70–84. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780823_7CrossRefGoogle Scholar
  16. 16.
    Borselius, N.: Mobile agent security. Electron. Commun. Eng. J. 14(5), 211–218 (2002)CrossRefGoogle Scholar
  17. 17.
    Cai, J., Flocchini, P., Santoro, N.: Network decontamination from a black virus. In: 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops & Ph.D. Forum (IPDPSW), pp. 696–705. IEEE (2013)Google Scholar
  18. 18.
    Cai, J., Flocchini, P., Santoro, N.: Decontaminating a network from a black virus. Int. J. Netw. Comput. 4(1), 151–173 (2014)CrossRefGoogle Scholar
  19. 19.
    Cai, J., Flocchini, P., Santoro, N.: Distributed black virus decontamination and rooted acyclic orientations. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), pp. 1681–1688. IEEE (2015)Google Scholar
  20. 20.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Black hole search with finite automata scattered in a synchronous torus. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 432–446. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24100-0_41CrossRefGoogle Scholar
  21. 21.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight bounds for scattered black hole search in a ring. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 186–197. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22212-2_17CrossRefGoogle Scholar
  22. 22.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight bounds for black hole search with scattered agents in synchronous rings. Theor. Comput. Sci. (TCS) 509, 70–85 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Proceedings of 21st International Conference on Distributed Computing, pp. 108–122 (2007)Google Scholar
  24. 24.
    Chess, D.M.: Security issues in mobile code systems. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 1–14. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-68671-1_1CrossRefGoogle Scholar
  25. 25.
    Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 320–332. Springer, Heidelberg (2006).  https://doi.org/10.1007/11945529_23CrossRefGoogle Scholar
  26. 26.
    Cooper, C., Klasing, R., Radzik, T.: Locating and repairing faults in a network with mobile agents. Theor. Comput. Sci. 411(14–15), 1638–1647 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Czyzowicz, J., et al.: More efficient periodic traversal in anonymous undirected graphs. Theor. Comput. Sci. 444, 60–76 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Czyzowicz, J., Dobrev, S., Kralovic, R., Miklik, S., Pardubska, D.: Black hole search in directed graphs. In: Proceedings of 16th International Colloquium on Structural Information and Communication Complexity, pp. 182–194 (2009)CrossRefGoogle Scholar
  29. 29.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in tree networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 67–80. Springer, Heidelberg (2005).  https://doi.org/10.1007/11516798_5CrossRefGoogle Scholar
  30. 30.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fundamenta Informaticae 71(2,3), 229–242 (2006)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Comb. Probab. Comput. 16(4), 595–619 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Das, S., Focardi, R., Luccio, F., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Comput. Sci. (2018, to appear)Google Scholar
  34. 34.
    Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious agent. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28472-9_16CrossRefGoogle Scholar
  35. 35.
    D’Emidio, M., Frigioni, D., Navarra, A.: Exploring and making safe dangerous networks using mobile entities. In: Cichoń, J., Gȩbala, M., Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 136–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39247-4_12CrossRefGoogle Scholar
  36. 36.
    D’Emidio, M., Frigioni, D., Navarra, A.: Explore and repair graphs with black holes using mobile entities. Theor. Comput. Sci. 605, 129–145 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment I: the rectilinear case. J. ACM 45, 215–245 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Dobrev, S., Flocchini, P., Královič, R., Prencipe, G., Ruzicka, P., Santoro, N.: Black hole search by mobile agents in hypercubes and related networks. In: OPODIS, vol. 3, pp. 169–180 (2002)Google Scholar
  40. 40.
    Dobrev, S., Flocchini, P., Královič, R., Ružička, P., Prencipe, G., Santoro, N.: Black hole search in common interconnection networks. Networks 47(2), 61–71 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Dobrev, S., Flocchini, P., Královič, R., Santoro, N.: Exploring an unknown graph to locate a black hole using tokens. In: Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) TCS 2006. IIFIP, vol. 209, pp. 131–150. Springer, Boston, MA (2006).  https://doi.org/10.1007/978-0-387-34735-6_14CrossRefGoogle Scholar
  42. 42.
    Dobrev, S., Flocchini, P., Královič, R., Santoro, N.: Exploring an unknown dangerous graph using tokens. Theor. Comput. Sci. 472, 28–45 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 166–179. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45414-4_12CrossRefGoogle Scholar
  44. 44.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: optimal mobile agent protocols. In: Proceedings of the Twenty-first Annual Symposium on Principles of Distributed Computing, PODC 2002, pp. 153–162. ACM, New York (2002)Google Scholar
  45. 45.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27860-3_6zbMATHCrossRefGoogle Scholar
  46. 46.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: optimal mobile agents protocols. Distrib. Comput. 19(1), 1–18 (2006)zbMATHCrossRefGoogle Scholar
  47. 47.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48, 67–90 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Dobrev, S., Flocchini, P., Santoro, N.: Improved bounds for optimal black hole search with a network map. In: Královic̆, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 111–122. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27796-5_11CrossRefGoogle Scholar
  49. 49.
    Dobrev, S., Flocchini, P., Santoro, N.: Cycling through a dangerous network: a simple efficient strategy for black hole search. In: Proceedings of the 26th IEEE International Conference on Distributed Computing Systems, ICDCS 2006, p. 57. IEEE Computer Society, Washington, DC (2006)Google Scholar
  50. 50.
    Dobrev, S., Královič, R., Santoro, N., Shi, W.: Black hole search in asynchronous rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006).  https://doi.org/10.1007/11758471_16CrossRefGoogle Scholar
  51. 51.
    Dobrev, S., Santoro, N., Shi, W.: Locating a black hole in an un-oriented ring using tokens: the case of scattered agents. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 608–617. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74466-5_64CrossRefGoogle Scholar
  52. 52.
    Dobrev, S., Santoro, N., Shi, W.: Scattered black hole search in an oriented ring using tokens. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium, pp. 1–8 (2007)Google Scholar
  53. 53.
    Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black hole in an un-oriented ring with tokens. Int. J. Found. Comput. Sci. 19(6), 1355–1372 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.: Optimal constrained graph exploration. In: Proceedings of 12th Annual ACM Symposium on Discrete Algorithms, pp. 807–814 (2001)Google Scholar
  55. 55.
    Engebretsen, L., Karpinski, M.: TSP with bounded metrics. J. Comput. Syst. Sci. 72(4), 509–546 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for capturing an intruder. In: Proceedings of 18th IEEE International Parallel and Distributed Processing Symposium (2005)Google Scholar
  57. 57.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of chordal rings and tori. In: Proceedings of 8th Workshop on Advances in Parallel and Distributed Computational Models (2006)Google Scholar
  58. 58.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77096-1_8CrossRefGoogle Scholar
  59. 59.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pure tokens. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 227–241. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87779-0_16CrossRefGoogle Scholar
  60. 60.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pebbles. Algorithmica 62(3–4), 1006–1033 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Map construction and exploration by mobile agents scattered in a dangerous network. In: Proceedings of IEEE International Symposium on Parallel & Distributed Processing, pp. 1–10 (2009)Google Scholar
  62. 62.
    Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Searching for black holes in subways. Theory Comput. Syst. 50(1), 158–184 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Mapping an unfriendly subway system. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 190–201. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13122-6_20CrossRefGoogle Scholar
  64. 64.
    Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Fault-tolerant exploration of an unknown dangerous graph by scattered agents. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 299–313. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33536-5_30CrossRefGoogle Scholar
  65. 65.
    Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Finding good coffee in Paris. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 154–165. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30347-0_17CrossRefGoogle Scholar
  66. 66.
    Flocchini, P., Luccio, F.L., Song, L.X.: Size optimal strategies for capturing an intruder in mesh networks. In: Communications in Computing, pp. 200–206 (2005)Google Scholar
  67. 67.
    Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definitions, properties, and classes. Networks 32(3), 165–180 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing. Theor. Comput. Sci. 291, 29–53 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Flocchini, P., Santoro, N.: Distributed security algorithms by mobile agents. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 1–14. Springer, Heidelberg (2006).  https://doi.org/10.1007/11947950_1CrossRefGoogle Scholar
  70. 70.
    Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In: Sao, J., Das, S. (eds.) Mobile Agents in Networking and Distributed Computing. Wiley, Hoboken (2012)Google Scholar
  71. 71.
    Foukia, N., Hulaas, J.G., Harms, J.: Intrusion detection with mobile agents. In: Proceedings of 11th Annual Conference of the Internet Society (2001)Google Scholar
  72. 72.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Fraigniaud, P., Ilcinkas, D.: Digraphs exploration with little memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24749-4_22CrossRefGoogle Scholar
  74. 74.
    Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Glaus, P.: Locating a black hole without the knowledge of incoming link. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 128–138. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05434-1_13CrossRefGoogle Scholar
  76. 76.
    Greenberg, M.S., Byington, J.C., Harper, D.G.: Mobile agents and security. IEEE Commun. Mag. 36(7), 76–85 (1998)CrossRefGoogle Scholar
  77. 77.
    Hohl, F.: Time limited blackbox security: protecting mobile agents from malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-68671-1_6CrossRefGoogle Scholar
  78. 78.
    Hohl, F.: A framework to protect mobile agents by using reference states. In: Proceedings of 20th International Conference on Distributed Computing Systems, pp. 410–417 (2000)Google Scholar
  79. 79.
    Jansen, W.: Countermeasures for mobile agent security. Comput. Commun. 23(17), 1667–1676 (2000)CrossRefGoogle Scholar
  80. 80.
  81. 81.
    Supriya, K.M.: Mobile ad hoc netwoks security attacks and secured routing protocols: a survey. In: Meghanathan, N., Chaki, N., Nagamalai, D. (eds.) CCSIT 2012. LNICST, vol. 84, pp. 119–124. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27299-8_14CrossRefGoogle Scholar
  82. 82.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 200–215. Springer, Heidelberg (2005).  https://doi.org/10.1007/11429647_17zbMATHCrossRefGoogle Scholar
  83. 83.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. Theor. Comput. Sci. 384(2–3), 201–221 (2007)zbMATHCrossRefGoogle Scholar
  84. 84.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black hole search problems. Networks 52(4), 216–226 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Kosowski, A., Navarra, A., Pinotti, C.M.: Synchronization helps robots to detect black holes in directed graphs. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 86–98. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10877-8_9CrossRefGoogle Scholar
  86. 86.
    Kosowski, A., Navarra, A., Pinotti, C.M.: Synchronous black hole search in directed graphs. Theor. Comput. Sci. 412(41), 5752–5759 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Královič, R., Miklík, S.: Periodic data retrieval problem in rings containing a malicious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13284-1_13CrossRefGoogle Scholar
  88. 88.
    Lange, D., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM 42(3), 88–89 (1999)CrossRefGoogle Scholar
  89. 89.
    Luccio, F., Pagli, L., Santoro, N.: Network decontamination with local immunization. In: Proceedings of 8th Workshop on Advances in Parallel and Distributed Computational Models (2006)Google Scholar
  90. 90.
    Markou, E.: Identifying hostile nodes in networks using mobile agents. Bull. Eur. Assoc. Theor. Comput. Sci. 108, 93–129 (2012)zbMATHGoogle Scholar
  91. 91.
    Markou, E., Paquette, M.: Black hole search and exploration in unoriented tori with synchronous scattered finite automata. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 239–253. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35476-2_17CrossRefGoogle Scholar
  92. 92.
    Miklík, S.: Exploration in faulty networks. Ph.D. thesis, Comenius University (2010)Google Scholar
  93. 93.
    Ng, S., Cheung, K.: Protecting mobile agents against malicious hosts by intention of spreading. In: Proceedings of International Conference on Parallel and Distributed Processing and Applications, pp. 725–729 (1999)Google Scholar
  94. 94.
    Oppliger, R.: Security issues related to mobile code and agent-based systems. Comput. Commun. 22(12), 1165–1170 (1999)CrossRefGoogle Scholar
  95. 95.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Peng, M., Shi, W., Corriveau, J.-P.: Repairing faulty nodes and locating a dynamically spawned black hole search using tokens. In: IEEE Conference on Communications and Network Security, pp. 136–145. IEEE (2018)Google Scholar
  97. 97.
    Peng, M., Shi, W., Corriveau, J.-P., Pazzi, R., Wang, Y.: Black hole search in computer networks: state-of-the-art, challenges and future directions. J. Parallel Distrib. Comput. 88, 1–15 (2016)CrossRefGoogle Scholar
  98. 98.
    Prencipe, G.: Corda: distributed coordination of a set of autonomous mobile robots. In: Proceedings of 4th European Research Seminar on Advances in Distributed Systems, pp. 185–190 (2001)Google Scholar
  99. 99.
    Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings of 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779 (2000)Google Scholar
  100. 100.
    Rollik, H.: Automaten in planaren graphen. Acta Informatica 13, 287–298 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-68671-1_4CrossRefGoogle Scholar
  102. 102.
    Schelderup, K., Ølnes, J.: Mobile agent security—issues and directions. In: Zuidweg, H., Campolargo, M., Delgado, J. (eds.) IS&N 1999. LNCS, vol. 1597, pp. 155–167. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48888-X_16CrossRefGoogle Scholar
  103. 103.
    Sen, J., Chandra, M.G., Harihara, S., Reddy, H., Balamuralidhar, P.: A mechanism for detection of gray hole attack in mobile ad hoc networks. In: 2007 6th International Conference on Information, Communications & Signal Processing, pp. 1–5. IEEE (2007)Google Scholar
  104. 104.
    Shannon, C.E.: Presentation of a maze-solving machine. In: Proceedings of 8th Conference of the Josiah Macy Jr. Foundation (Cybernetics), pp. 173–180 (1951)Google Scholar
  105. 105.
    Shi, W.: Black hole search with tokens in interconnected networks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05118-0_46CrossRefGoogle Scholar
  106. 106.
    Shi, W., Garcia-Alfaro, J., Corriveau, J.-P.: Searching for a black hole in interconnected networks using mobile agents and tokens. J. Parallel Distrib. Comput. 74(1), 1945–1958 (2014)CrossRefGoogle Scholar
  107. 107.
    Shi, W., Peng, M., Corriveau, J.-P., Croft, W.L.: Faulty node repair and dynamically spawned black hole search. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 144–162. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59608-2_8CrossRefGoogle Scholar
  108. 108.
    Spafford, E.H., Zamboni, D.: Intrusion detection using autonomous agents. Comput. Netw. 34(4), 547–570 (2000)CrossRefGoogle Scholar
  109. 109.
    Su, M.-Y.: Prevention of selective black hole attacks on mobile ad hoc networks through intrusion detection systems. Comput. Commun. 34(1), 107–117 (2011)CrossRefGoogle Scholar
  110. 110.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Vitek, J., Castagna, G.: Mobile computations and hostile hosts. In: Tsichritzis, D. (ed.) Mobile Objects, pp. 241–261. University of Geneva (1999)Google Scholar
  112. 112.
    Zarrad, A., Daadaa, Y.: A review of computation solutions by mobile agents in an unsafe environment. Int. J. Adv. Comput. Sci. Appl. 4(4), 87–92 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of ThessalyLamiaGreece
  2. 2.Carleton UniversityOttawaCanada

Personalised recommendations