Advertisement

Design Components of Clinical Work Environments with Computerized Decision Support Systems

  • Uta Wilkens
  • Florian M. Artinger
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 903)

Abstract

Computerized Decision Support Systems (CDSSs) can be a vital component in a medical setting to foster the use of evidence based medicine and minimize malpractice. Surprisingly, the adoption rate of CDSSs has remained far below expectations and there has been little impact of CDSSs on measurable health outcomes. We outline the components of clinical work environments in order to elaborate on the driving forces for technology acceptance. The components address issues such as high involvement work systems and distributed intelligence. The reflection of these characteristics leads us to the conclusion that the perceived usefulness of a technology and its ease of use is a necessary but not a sufficient condition. Technological acceptance primarily depends on the perceived mindfulness of individual intelligence in workplace design.

Keywords

Computerized decision support systems Artificial intelligence Distributed intelligence Workplace design 

References

  1. 1.
    Greenes, R.A.: Clinical Decision Support: The Road to Broad Adoption. Elsevier/Academic Press, Oxford (2014)Google Scholar
  2. 2.
    Djulbegovic, B., Hozo, I., Dale, W.: Transforming clinical practice guidelines and clinical pathways into fast-and-frugal decision trees to improve clinical care strategies. J. Eval. Clin. Pract. 24, 1–8 (1981)Google Scholar
  3. 3.
    Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113–108ra113 (2011)CrossRefGoogle Scholar
  4. 4.
    Dawes, R.M., Faust, D., Meehl, P.E.: Clin. vs Actuar. Assess. Sci. 243, 1668–1674 (1989)Google Scholar
  5. 5.
    Black, A.D., Car, J., Pagliari, C., Anandan, C., Cresswell, K., Bokun, T., McKinstry, B., Procter, R., Majeed, A., Sheikh, A.: The impact of ehealth on the quality and safety of health care: A systematic overview. PLoS Med. 8(1), e1000387 (2011)CrossRefGoogle Scholar
  6. 6.
    Greenes, R.A., Bates, D.W., Kawamoto, K., Middleton, B., Osheroff, J., Shahar, Y.: Clinical decision support models and frameworks: Seeking to address research issues underlying implementation successes and failures. J. Biomed. Inform. 78, 134–143 (2018)CrossRefGoogle Scholar
  7. 7.
    Vrieze, S.I., Grove, W.M.: Survey on the use of clinical and mechanical prediction methods in clinical psychology. Prof. Psychol. Res. Pract. 40, 525–531 (2009)CrossRefGoogle Scholar
  8. 8.
    Jaspers, M.W.M., Smeulers, M., Vermeulen, H., Peute, L.W.: Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J. Am. Med. Informatics Assoc. 18, 327–334 (2011)CrossRefGoogle Scholar
  9. 9.
    Jones, A.J.I., Artikis, A., Pitt, J.: The design of intelligent socio-technical systems. Artif. Intell. 39, 5–20 (2013)CrossRefGoogle Scholar
  10. 10.
    Wilkens, U., Herrmann, T.: Gibt es eine Arbeitswissenschaft der Digitalisierung? Ein Diskursbeitrag. In: Schlick, C. (ed.) Megatrend Digitalisierung. Potenziale der Arbeits- und Betriebsorganisation, pp. 215–230. GITO Verlag, Berlin (2016)Google Scholar
  11. 11.
    Shteingart, H., Neiman, T., Loewenstein, Y.: The role of first impression in operant learning. J. Exp. Psychol. Gen. 142, 476–488 (2013)CrossRefGoogle Scholar
  12. 12.
    Dietvorst, B.J., Simmons, J.P., Massey, C.: Overcoming algorithm aversion: people will use imperfect algorithms if they can (even slightly) modify them. Manag. Sci. 64, 1155–1170 (2018)CrossRefGoogle Scholar
  13. 13.
    Artinger, F.M., Petersen, M., Gigerenzer, G., Weibler, J.: Heuristics as adaptive decision strategies in management. J. Organ. Behav. 36, S33–S52 (2015)CrossRefGoogle Scholar
  14. 14.
    Koppel, R., et al.: Role of computerized physician order entry systems in facilitating medication errors. JAMA 293, 1197–1203 (2005)CrossRefGoogle Scholar
  15. 15.
    Davis, F.D.: User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. Int. J. Man Mach. Stud. 38, 475–487 (1993)CrossRefGoogle Scholar
  16. 16.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46, 186–204 (2000)CrossRefGoogle Scholar
  17. 17.
    Jenny, M.A., Pachur, T., Lloyd Williams, S., Becker, E., Margraf, J.: Simple rules for detecting depression. J. Appl. Res. Mem. Cogn. 2, 149–157 (2013)CrossRefGoogle Scholar
  18. 18.
    Jenny, M.A., et al.: Are Mortality and Acute Morbidity in Patients Presenting With Nonspecific Complaints Predictable Using Routine Variables? Acad. Emerg. Med. 22, 1155–1163 (2015)CrossRefGoogle Scholar
  19. 19.
    Bonias, D., Bartram, T., Leggat, S.G., Stanton, P.: Does psychological empowerment mediate the relationship between high performance work systems and patient care quality in hospitals? Asia Pacific J. Hum. Resour. 48, 319–337 (2010)CrossRefGoogle Scholar
  20. 20.
    Scotti, D.J., Driscoll, A.E., Harmon, J., Behson, S.J.: Links among high-performance work environment, service quality, and customer satisfaction: an extension to the healthcare sector. J. Healthc. Manag. 52, 109–124 (2007)CrossRefGoogle Scholar
  21. 21.
    Weick, K.E., Sutcliffe, K.M.: Mindfulness and the quality of organizational attention. Organ. Sci. 17, 514–524 (2006)CrossRefGoogle Scholar
  22. 22.
    Cobb, P.: Learning from distributed theories of intelligence. Mind Cult. Act. 5, 187–204 (1998)CrossRefGoogle Scholar
  23. 23.
    Pea, R.D.: Learning scientific concepts through material and social activities: conversational analysis meets conceptual change. Educ. Psychol. 28, 265–277 (1993)CrossRefGoogle Scholar
  24. 24.
    Fischer, G.: Communities of interest: learning through the interaction of multiple knowledge systems. In: 24th Annual Information Systems Research Seminar in Scan-dinavia (IRIS’24) (Ulvik, Norway), Department of Information Science, Bergen, Norway, pp. 1–14 (2001)Google Scholar
  25. 25.
    Karsh, B.T.: Beyond usability: designing effective technology implementation systems to promote patient safety. Qual. Saf. Health. Care. 13, 388–394 (2004)CrossRefGoogle Scholar
  26. 26.
    Cohen-Charash, Y., Spector, P.E.: The role of justice in organizations: a meta-analysis. Organ. Behav. Hum. Decis. Process. 86, 278–321 (2001)CrossRefGoogle Scholar
  27. 27.
    Kim, W.C., Mauborgne, R.: Procedural justice, strategic decision making, and the knowledge economy. Strat. Mgmt. J. 19, 323–338 (1998)CrossRefGoogle Scholar
  28. 28.
    Crocetti, E., Avanzi, L., Hawk, S.T., Fraccaroli, F., Meeus, W.: Personal and social facets of job identity: a person-centered approach. J. Bus. Psychol. 29, 281–300 (2014)CrossRefGoogle Scholar
  29. 29.
    Skorikov, V., Vondracek, F.W.: Occupational identity. In: Schwartz, S.J., Luyckx, K., Vignoles, V.L. (eds.) Handbook of Identity Theory and Research, pp. 693–714. Springer, New York (2011)CrossRefGoogle Scholar
  30. 30.
    Ötting, S.K., Maier, G.W.: The importance of procedural justice in Human-Machine Interactions: Intelligent systems as new decision agents in organizations. Comput. Hum. Behav. 89, 27–39 (2018)CrossRefGoogle Scholar
  31. 31.
    Taylor, F.W.: The Principles of Scientific Management. Harper, New York (1911)Google Scholar
  32. 32.
    Kern, H., Schumann, M.: Industriearbeit und Arbeiterbewußtsein. Frankfurt a. M, Suhrkamp (1985)Google Scholar
  33. 33.
    Hackman, J., Oldham, G.R.: Development of the Job Diagnostic Survey. J. Appl. Psychol. 60, 159–170 (1975)CrossRefGoogle Scholar
  34. 34.
    Adler, P.S., Cole, R.: Designed for learning: a tale of two auto plants. Sloan Manag. Rev. 34, 85–94 (1993)Google Scholar
  35. 35.
    Simon, H.M.: Rational choice and the structure of the environment. Psychol. Rev. 63, 12–38 (1956)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ruhr-University Bochum (RUB), Institute of Work Science, Chair for Work, Human Resources and LeadershipBochumGermany
  2. 2.Max Planck Institute for Human DevelopmentBerlinGermany
  3. 3.Simply Rational GmbHBerlinGermany

Personalised recommendations