Advertisement

A Strain Based Model for Adaptive Regulation of Cognitive Assistance Systems—Theoretical Framework and Practical Limitations

  • Dominic BläsingEmail author
  • Manfred Bornewasser
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 903)

Abstract

In order to manage increasing complexity so called cognitive assistance systems are integrated into assembly systems. On the basis of real-time measurement and analysis of physiological signals, these assistance systems help to coordinate efficient behavior and to prevent states of long lasting detrimental workload and strain. With measurement technology getting smaller, more powerful and wearable it’s possible to collect and analyze personal physiological data in real-time and detect significant changes at the workplace. It is intended to use these data to control a cognitive assistance systems which as a consequence of a monitored detrimental workload leads to adaptive changes in assembly processes and to a reduction of workload. The underlying principle can be a self-actualizing machine learning algorithm. We want to present a theoretical framework to sketch possibilities of such data-controlled, adaptive systems and to describe some obstacles which have to be overcome before they’re ready for use.

Keywords

Cognitive assistance system Mental workload Physiological measurement Acceptance 

Notes

Acknowledgements

The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the project Montexas4.0 (FKZ 02L15A261).

References

  1. 1.
    Schuh, G., Gartzen, T., Wagner, J.: Complexity-oriented ramp-up of assembly systems. CIRP J. Manuf. Sci. Technol. 10, 1–15 (2015)CrossRefGoogle Scholar
  2. 2.
    Samy, S.N., ElMaraghy, H.: A model for measuring products assembly complexity. Int. J. Comput. Integr. Manuf. 23, 1015–1027 (2010)CrossRefGoogle Scholar
  3. 3.
    Hacker, W.: Arbeitsgegenstand Mensch: Psychologie dialogisch-interaktiver Erwerbsarbeit: ein Lehrbuch. Pabst Science Publ, Lengerich (2009)Google Scholar
  4. 4.
    Wickens, C.D.: Multiple resources and mental workload. Hum. Factors: J. Hum. Factors Ergon. Soc. 50, 449–455 (2008)CrossRefGoogle Scholar
  5. 5.
    Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58, 1–17 (2015)CrossRefGoogle Scholar
  6. 6.
    Hoover, A., Singh, A., Fishel-Brown, S., Muth, E.: Real-time detection of workload changes using heart rate variability. Biomed. Sign. Process. Control 7, 333–341 (2012)CrossRefGoogle Scholar
  7. 7.
    Zarjam, P., Epps, J., Lovell, N.H.: Beyond subjective self-rating: EEG signal classification of cognitive workload. IEEE Trans. Auton. Ment. Dev. 7, 301–310 (2015)CrossRefGoogle Scholar
  8. 8.
    Plarre K., Raij A.B., Hossain M., et al.: Continuous inference of psychological stress from sensory measurements collected in the natural environment. In: Proceedings of ACM/IEEE Conference on Information Processing in Sensor Networks, pp. 97–108 (2011)Google Scholar
  9. 9.
    Ma, Q.G., Shang, Q., Fu, H.J., Chen, F.Z.: Mental workload analysis during the production process: EEG and GSR activity. Appl. Mech. Mater. 220–223, 193–197 (2012)Google Scholar
  10. 10.
    Kosch, T., Hassib, M., Buschek, D., Schmidt, A.: Look into my eyes: using pupil dilation to estimate mental workload for task complexity adaptation. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems - CHI 2018, pp. 1–6. ACM Press, Montreal (2018)Google Scholar
  11. 11.
    Hincks, S.W., Afergan, D., Jacob, R.J.K.: Using fNIRS for real-time cognitive workload assessment. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience, pp. 198–208. Springer International Publishing, Cham (2016).  https://doi.org/10.1007/978-3-319-39955-3_19CrossRefGoogle Scholar
  12. 12.
    Chen, F., et al.: Robust Multimodal Cognitive Load Measurement. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  13. 13.
    Seoane, F., et al.: Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 14, 7120–7141 (2014)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Burns, C., Hu, R.: Understanding automated financial trading using work domain analysis. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 59, pp. 165–169 (2015)CrossRefGoogle Scholar
  15. 15.
    Rusnock, C.F., Borghetti, B.J.: Workload profiles: a continuous measure of mental workload. Int. J. Ind. Ergon. 63, 49–64 (2018)CrossRefGoogle Scholar
  16. 16.
    Valenza, G., Citi, L., Garcia, R.G., Taylor, J.N., Toschi, N., Barbieri, R.: Complexity variability assessment of nonlinear time-varying cardiovascular control. Sci. Rep. 7, 42779 (2017)CrossRefGoogle Scholar
  17. 17.
    Kim, J., Andre, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067–2083 (2008)CrossRefGoogle Scholar
  18. 18.
    ElKomy, M., Abdelrahman, Y., Funk, M., Dingler, T., Schmidt, A., Abdennadher, S.: ABBAS: an adaptive bio-sensors based assistive system. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA 2017, pp. 2543–2550. ACM Press, Denver (2017)Google Scholar
  19. 19.
    Kosch, T., Abdelrahman, Y., Funk, M., Schmidt, A.: One size does not fit all: challenges of providing interactive worker assistance in industrial settings. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers on - UbiComp 2017, pp. 1006–1011. ACM Press, Maui (2017)Google Scholar
  20. 20.
    Kuronen, E.: EPIC sensors in electrocardiogram measurement. Master thesis, Oulu University of Applied Sciences (2013)Google Scholar
  21. 21.
    Draghici, A.E., Taylor, J.A.: The physiological basis and measurement of heart rate variability in humans. J. Physiol. Anthropol. 35, 22 (2016)CrossRefGoogle Scholar
  22. 22.
    Spencer, R.L., Deak, T.: A users guide to HPA axis research. Physiol. Behav. 178, 43–65 (2017)CrossRefGoogle Scholar
  23. 23.
    Bornewasser, M., Bläsing, D., Hinrichsen, S.: Informatorische Montageassistenzsysteme in der manuellen Montage: Ein Werkzeug zur Reduktion mentaler Beanspruchung. Z. Arb. Wiss. 72, 264–275 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of PsychologyUniversity GreifswaldGreifswaldGermany

Personalised recommendations