Hierarchical Planning Guided by Genetic Algorithms for Multiple HAPS in a Time-Varying Environment

  • Jane Jean KiamEmail author
  • Valerie Hehtke
  • Eva Besada-Portas
  • Axel Schulte
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 903)


A hierarchical task planning structure is favorable for its capability to accommodate constraints at different abstraction levels and also for the similarity of its planning approach as a human. This structure is adopted for the task planning for multiple HAPS. However, the combinatorial search problem grows with the presence of multiple agents. This work proposes a method to guide the decomposition of the tasks down the hierarchy with genetic algorithm in order to find quality plans within limited time.


Multiple agents Hierarchical planning HAPS Genetic algorithm 


  1. 1.
    Müller, R., Kiam, J.J., Mothes, F.: Multiphysical simulation of a semi-autonomous solar powered high altitude pseudo-satellite. In IEEE Aerospace Conference, Montana (2018)Google Scholar
  2. 2.
    Benton, J., Smith, D., Kaneshige, J., Keely, L., Stucky, T.: CHAP-E: A plan execution assistant for pilots. In: 28th International Conference on Automated Planning and Scheduling (ICAPS), Delft, The Netherlands (2018)Google Scholar
  3. 3.
    Höller, D., Bercher, P., Behnke, G., Biundo, S.: A generic method to guide HTN progression search with classical heuristics. In: 28th International Conference on Automated Planning and Scheduling (ICAPS), Delft, The Netherlands (2018)Google Scholar
  4. 4.
    Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2-An HTN planning system. J. Artif. Intell. Res. (JAIR) 2003(20), 379–404 (2003)CrossRefGoogle Scholar
  5. 5.
    Chen, K., Xu, J., Reiff-Marganiec, S.: Markov-HTN planning approach to enhance flexibility of automatic web service composition. IEEE International Conference on Web Services, Los Angeles, California (2009)Google Scholar
  6. 6.
    Kiam, J.J., Schulte, A.: Multilateral quality mission planning for solar-powered long-endurance UAV. In IEEE Aerospace Conference, Yellowstone Conference Center, Big Sky, Montana (2017)Google Scholar
  7. 7.
    Johnson, M., Jung, J., Rios, J., Mercer, J., Homola, J., Prevot, T., Mulfinger, D., Kopardekar, P.: Flight test evaluation of an unmanned aircraft system traffic management (UTM) concept for multiple beyond-visual-line-of-sight operations. In Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM) (2017)Google Scholar
  8. 8.
    Kiam, J.J., Schulte, A.: Multilateral mission planning in a time-varying vector field with dynamic constraints. Man, and Cybernetics, Miyazaki, Japan, IEEE Systems (2018)Google Scholar
  9. 9.
    Shima, T., Rasmussen, S.J., Sparks, A.G., Passino, K.M.: Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 33(11), 3252–3269 (2006)CrossRefGoogle Scholar
  10. 10.
    Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press (1999)Google Scholar
  11. 11.
    Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon. Weather Rev. 139(12), 3887–3905 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jane Jean Kiam
    • 1
    Email author
  • Valerie Hehtke
    • 1
  • Eva Besada-Portas
    • 2
  • Axel Schulte
    • 1
  1. 1.Institute of Flight SystemsUniversity of the BundeswehrMunich, NeubibergGermany
  2. 2.Departamento de Arquitectura de Computadores y AutomaticaUniversidad Complutense de MadridMadridSpain

Personalised recommendations