# Exact Algorithms for the Special Cases of Two Hard to Solve Problems of Searching for the Largest Subset

• Alexander Kel’manov
• Anna Panasenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11179)

## Abstract

We consider two problems of searching for the largest subset in a finite set of points in Euclidean space. Both problems have applications, in particular, in data analysis and data approximation. In each problem, an input set and a positive real number are given and it is required to find a subset (i.e., a cluster) of the largest size under a constraint on the value of a quadratic function. The points in the input set which are outside the sought subset are treated as a second cluster. In the first problem, the function in the constraint is the sum over both clusters of the intracluster sums of the squared distances between the elements of the clusters and their centers. The center of the first (i.e., sought) cluster is unknown and determined as the centroid, while the center of the second one is fixed in a given point in Euclidean space (without loss of generality in the origin). In the second problem, the function in the constraint is the sum over both clusters of the weighted intracluster sums of the squared distances between the elements of the clusters and their centers. As in the first problem, the center of the first cluster is unknown and determined as the centroid, while the center of the second one is fixed in the origin. In this paper, we show that both problems are strongly NP-hard. Also, we present exact algorithms for the cases of these problems in which the input points have integer components. If the space dimension is bounded by some constant, the algorithms are pseudopolynomial.

## Keywords

Euclidean space 2-clustering Largest subset NP-hardness Exact algorithm Pseudopolynomial-time solvability

## Notes

### Acknowledgments

The study of Problem 1 was supported by the Russian Science Foundation, project 16-11-10041. The study of Problem 2 was supported by the Russian Foundation for Basic Research, projects 16-07-00168 and 18-31-00398, by the Russian Academy of Science (the Program of Basic Research), project 0314-2016-0015, and by the Russian Ministry of Science and Education under the 5-100 Excellence Programme.

## References

1. 1.
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, vol. 1, pp. 281–297 (1967)Google Scholar
2. 2.
Rao, M.: Cluster analysis and mathematical programming. J. Am. Stat. Assoc. 66, 622–626 (1971)
3. 3.
Hansen, P., Jaumard, B., Mladenovich, N.: Minimum sum of squares clustering in a low dimensional space. J. Classif. 15, 37–55 (1998)
4. 4.
Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program. 79, 191–215 (1997)
5. 5.
Fisher, R.A.: Statistical Methods and Scientific Inference. Hafner, New York (1956)
6. 6.
Jain, A.K.: Data clustering: 50 years beyond $$k$$-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)
7. 7.
Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)
8. 8.
Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Mach. Learn. 56, 9–33 (2004)
9. 9.
Dolgushev, A.V., Kel’manov, A.V.: On the algorithmic complexity of a problem in cluster analysis. J. Appl. Ind. Math. 5(2), 191–194 (2011)
10. 10.
Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. Theoret. Comput. Sci. 442, 13–21 (2012)
11. 11.
Kel’manov, A.V., Pyatkin, A.V.: On the complexity of a search for a subset of “similar” vectors. Doklady Math. 78(1), 574–575 (2008)
12. 12.
Kel’manov, A.V., Pyatkin, A.V.: On a version of the problem of choosing a vector subset. J. Appl. Ind. Math. 3(4), 447–455 (2009)
13. 13.
Brucker, P.: On the complexity of clustering problems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research. LNEMS, vol. 157, pp. 45–54. Springer, Heidelberg (1978).
14. 14.
Bern, M., Eppstein, D.: Approximation algorithms for geometric problems. In: Approximation Algorithms for NP-Hard Problems, pp. 296–345. PWS Publishing, Boston (1997)Google Scholar
15. 15.
Indyk, P.: A sublinear time approximation scheme for clustering in metric space. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 154–159 (1999)Google Scholar
16. 16.
de la Vega, F., Kenyon, C.: A randomized approximation scheme for metric max-cut. J. Comput. Syst. Sci. 63, 531–541 (2001)
17. 17.
de la Vega, F., Karpinski, M., Kenyon, C., Rabani, Y.: Polynomial time approximation schemes for metric min-sum clustering. Electronic Colloquium on Computational Complexity (ECCC). Report No. 25 (2002)Google Scholar
18. 18.
Hasegawa, S., Imai, H., Inaba, M., Katoh, N., Nakano, J.: Efficient algorithms for variance-based $$k$$-clustering. In: Proceedings of the 1st Pacific Conference on Computer Graphics and Applications, Pacific Graphics 1993, Seoul, Korea, vol. 1. pp. 75–89. World Scientific, River Edge (1993)Google Scholar
19. 19.
Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based $$k$$-clustering: (extended abstract), 6–8 June 1994, Stony Brook, NY, USA, pp. 332–339. ACM, New York (1994)Google Scholar
20. 20.
Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23, 555–566 (1976)
21. 21.
Ageev, A.A., Kel’manov, A.V., Pyatkin, A.V.: NP-hardness of the Euclidean maxcut problem. Doklady Math. 89(3), 343–345 (2014)
22. 22.
Ageev, A.A., Kel’manov, A.V., Pyatkin, A.V.: Complexity of the weighted max-cut in Euclidean space. J. Appl. Ind. Math. 8(4), 453–457 (2014)
23. 23.
Kel’manov, A.V., Pyatkin, A.V.: NP-hardness of some quadratic Euclidean 2-clustering problems. Doklady Math. 92(2), 634–637 (2015)
24. 24.
Kel’manov, A.V., Pyatkin, A.V.: On the complexity of some quadratic Euclidean 2-clustering problems. Comput. Math. Math. Phys. 56(3), 491–497 (2016)
25. 25.
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New York (2006)
26. 26.
James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer Science+Business Media, LLC, New York (2013).
27. 27.
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, Heidelberg (2009).
28. 28.
Aggarwal, C.C.: Data Mining: The Textbook. Springer, Heidelberg (2015).
29. 29.
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge (2017)Google Scholar
30. 30.
Shirkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y., Herawan, T.: Big data clustering: a review. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8583, pp. 707–720. Springer, Cham (2014).
31. 31.
Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995)
32. 32.
Kel’manov, A.V., Khandeev, V.I.: A 2-approximation polynomial algorithm for a clustering problem. J. Appl. Ind. Math. 7(4), 515–521 (2013)
33. 33.
Gimadi, E.Kh., Kel’manov, A.V., Kel’manova, M.A., Khamidullin, S.A.: A posteriori detection of a quasi periodic fragment in numerical sequences with given number of recurrences. Siberian J. Ind. Math. 9(1(25)), 55–74 (2006). (in Russian)Google Scholar
34. 34.
Gimadi, E.K., Kel’manov, A.V., Kel’manova, M.A., Khamidullin, S.A.: A posteriori detecting a quasiperiodic fragment in a numerical sequence. Pattern Recogn. Image Anal. 18(1), 30–42 (2008)
35. 35.
Baburin, A.E., Gimadi, E.K., Glebov, N.I., Pyatkin, A.V.: The problem of finding a subset of vectors with the maximum total weight. J. Appl. Ind. Math. 2(1), 32–38 (2008)
36. 36.
Dolgushev, A.V., Kel’manov, A.V.: An approximation algorithm for solving a problem of cluster analysis. J. Appl. Ind. Math. 5(4), 551–558 (2011)
37. 37.
Dolgushev, A.V., Kel’manov, A.V., Shenmaier, V.V.: Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters. Proc. Steklov Inst. Math. 295(Suppl. 1), 47–56 (2016)
38. 38.
Kel’manov, A.V., Khandeev, V.I.: A randomized algorithm for two-cluster partition of a set of vectors. Comput. Math. Math. Phys. 55(2), 330–339 (2015)
39. 39.
Gimadi, E.K., Pyatkin, A.V., Rykov, I.A.: On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension. J. Appl. Ind. Math. 4(1), 48–53 (2010)
40. 40.
Shenmaier, V.V.: Solving some vector subset problems by Voronoi diagrams. J. Appl. Ind. Math. 10(4), 560–566 (2016)
41. 41.
Kel’manov, A.V., Khandeev, V.I.: An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors. J. Appl. Ind. Math. 9(4), 497–502 (2015)
42. 42.
Kel’manov, A.V., Khandeev, V.I.: Fully polynomial-time approximation scheme for a special case of a quadratic euclidean 2-clustering problem. J. Appl. Ind. Math. 56(2), 334–341 (2016)
43. 43.
Kel’manov, A.V., Motkova, A.V.: Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center. Comput. Math. Math. Phys. 58(1), 130–136 (2018)
44. 44.
Kel’manov, A.V., Motkova, A.V.: Exact pseudopolynomial algorithms for a balanced 2-clustering problem. J. Appl. Ind. Math. 10(3), 349–355 (2016)
45. 45.
Kel’manov, A., Motkova, A.: A fully polynomial-time approximation scheme for a special case of a balanced 2-clustering problem. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 182–192. Springer, Cham (2016).
46. 46.
Kel’manov, A., Motkova, A., Shenmaier, V.: An approximation scheme for a weighted two-cluster partition problem. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 323–333. Springer, Cham (2018).
47. 47.
Kel’manov, A., Khandeev, V., Panasenko, A.: Randomized algorithms for some clustering problems. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 109–119. Springer, Cham (2018).

© Springer Nature Switzerland AG 2018

## Authors and Affiliations

• Alexander Kel’manov
• 1
• 2