Devon: Deformable Volume Network for Learning Optical Flow

  • Yao LuEmail author
  • Jack Valmadre
  • Heng Wang
  • Juho Kannala
  • Mehrtash Harandi
  • Philip H. S. Torr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11134)


We propose a new neural network module, Deformable Cost Volume, for learning large displacement optical flow. The module does not distort the original images or their feature maps and therefore avoids the artifacts associated with warping. Based on this module, a new neural network model is proposed. The full version of this paper can be found online (


  1. 1.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). Scholar
  2. 2.
    Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). Scholar
  3. 3.
    Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv (2016)Google Scholar
  4. 4.
    Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: CVPR 2017 (2017)Google Scholar
  5. 5.
    Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NIPS 2015 (2015)Google Scholar
  6. 6.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981 (1981)Google Scholar
  7. 7.
    Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: CVPR 2017 (2017)Google Scholar
  8. 8.
    Sun, D., Yang, X., Liu, M.-Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. arXiv 2017 (2017)Google Scholar
  9. 9.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR 2015 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yao Lu
    • 1
    • 2
    Email author
  • Jack Valmadre
    • 3
  • Heng Wang
    • 4
  • Juho Kannala
    • 5
  • Mehrtash Harandi
    • 6
  • Philip H. S. Torr
    • 3
  1. 1.Australian National UniversityCanberraAustralia
  2. 2.Data61, CSIROSydneyAustralia
  3. 3.University of OxfordOxfordUK
  4. 4.FacebookCambridgeUSA
  5. 5.Aalto UniversityHelsinkiFinland
  6. 6.Monash UniversityMelbourneAustralia

Personalised recommendations