Advertisement

A Benchmark for Epithelial Cell Tracking

  • Jan Funke
  • Lisa Mais
  • Andrew Champion
  • Natalie Dye
  • Dagmar KainmuellerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11134)

Abstract

Segmentation and tracking of epithelial cells in light microscopy (LM) movies of developing tissue is an abundant task in cell- and developmental biology. Epithelial cells are densely packed cells that form a honeycomb-like grid. This dense packing distinguishes membrane-stained epithelial cells from the types of objects recent cell tracking benchmarks have focused on, like cell nuclei and freely moving individual cells. While semi-automated tools for segmentation and tracking of epithelial cells are available to biologists, common tools rely on classical watershed based segmentation and engineered tracking heuristics, and entail a tedious phase of manual curation. However, a different kind of densely packed cell imagery has become a focus of recent computer vision research, namely electron microscopy (EM) images of neurons. In this work we explore the benefits of two recent neuron EM segmentation methods for epithelial cell tracking in light microscopy. In particular we adapt two different deep learning approaches for neuron segmentation, namely Flood Filling Networks and MALA, to epithelial cell tracking. We benchmark these on a dataset of eight movies with up to 200 frames. We compare to Moral Lineage Tracing, a combinatorial optimization approach that recently claimed state of the art results for epithelial cell tracking. Furthermore, we compare to Tissue Analyzer, an off-the-shelf tool used by Biologists that serves as our baseline.

References

  1. 1.
    Aigouy, B., Umetsu, D., Eaton, S.: Segmentation and quantitative analysis of epithelial tissues. In: Dahmann, C. (ed.) Drosophila. MMB, vol. 1478, pp. 227–239. Springer, New York (2016).  https://doi.org/10.1007/978-1-4939-6371-3_13CrossRefGoogle Scholar
  2. 2.
    Stegmaier, J., et al.: Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36(2), 225–240 (2016)CrossRefGoogle Scholar
  3. 3.
    Farrell, D.L., Weitz, O., Magnasco, M.O., Zallen, J.A.: SEGGA: a toolset for rapid automated analysis of epithelial cell polarity and dynamics. Development 144(9), 1725–1734 (2017)CrossRefGoogle Scholar
  4. 4.
    Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)CrossRefGoogle Scholar
  5. 5.
    Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14(12), 1141 (2017)CrossRefGoogle Scholar
  6. 6.
    Jug, F., Levinkov, E., Blasse, C., Myers, E.W., Andres, B.: Moral lineage tracing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5926–5935 (2016)Google Scholar
  7. 7.
    Rempfler, M., et al.: Efficient algorithms for moral lineage tracing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4695–4704 (2017)Google Scholar
  8. 8.
    Rempfler, M., Kumar, S., Stierle, V., Paulitschke, P., Andres, B., Menze, B.H.: Cell lineage tracing in lens-free microscopy videos. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 3–11. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66185-8_1CrossRefGoogle Scholar
  9. 9.
    Funke, J., et al.: A deep structured learning approach towards automating connectome reconstruction from 3D electron micrographs. CoRR abs/1709.02974 (2017)Google Scholar
  10. 10.
    Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. bioRxiv, p. 200675 (2017)Google Scholar
  11. 11.
    Aigouy, B., et al.: Cell flow reorients the axis of planar polarity in the wing epithelium of drosophila. Cell 142(5), 773–786 (2010)CrossRefGoogle Scholar
  12. 12.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  13. 13.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  14. 14.
    Briggman, K., Denk, W., Seung, S., Helmstaedter, M.N., Turaga, S.C.: Maximin affinity learning of image segmentation. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 1865–1873. Curran Associates, Inc. (2009)Google Scholar
  15. 15.
    Dye, N.A., et al.: Cell dynamics underlying oriented growth of the drosophila wing imaginal disc. Development (2017). dev-155069Google Scholar
  16. 16.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jan Funke
    • 1
  • Lisa Mais
    • 2
  • Andrew Champion
    • 1
  • Natalie Dye
    • 3
  • Dagmar Kainmueller
    • 2
    Email author
  1. 1.HHMI Janelia Research CampusAshburnUSA
  2. 2.BIH/MDCBerlinGermany
  3. 3.MPI-CBGDresdenGermany

Personalised recommendations