Advertisement

Visual and Quantitative Comparison of Real and Simulated Biomedical Image Data

  • Tereza NečasováEmail author
  • David Svoboda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11134)

Abstract

The simulations in biomedical image analysis provide a solution when the real image data are difficult to be annotated or if they are available only in small quantities. The progress in simulations rapidly grows in the recent years. Nevertheless, the comparative techniques for the assessment of the plausibility of generated data are still unsatisfactory or none. This paper aims to point out the problem of insufficient comparison of real and synthetic data, which is done in many cases only by visual inspection or based on subjective measurements. The selected texture features are first compared in a univariate manner by quantile-quantile plots and Kolmogorov-Smirnov test. The evaluation is then extended into multivariate assessment using the PCA for a visualization and furthermore for a quantitative measure of similarity by Jaccard index. Two different image datasets were used to show the results and the importance of the validation of simulated data in many aspects.

Keywords

Feature comparison Validation of simulation Statistical evaluation Similarity visualisation 

Notes

Acknowledgement

This work was supported by Czech Science Foundation, grant No. GA17-05048S.

References

  1. 1.
    Apou, G., Feuerhake, F., Forestier, G., Naegel, B., Wemmert, C.: Synthesizing whole slide images. In: 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 154–159, September 2015Google Scholar
  2. 2.
    Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17(12), 1213–1223 (2001)CrossRefGoogle Scholar
  3. 3.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)CrossRefGoogle Scholar
  4. 4.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 24, 417 (1933)CrossRefGoogle Scholar
  5. 5.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  6. 6.
    Jolliffe, I.: Principal Component Analysis. Springer, New York (2002).  https://doi.org/10.1007/b98835CrossRefzbMATHGoogle Scholar
  7. 7.
    Kovacheva, V.N., Snead, D., Rajpoot, N.M.: A model of the spatial tumour heterogeneity in colorectal adenocarcinoma tissue. BMC Bioinform. 17(1), 255 (2016)CrossRefGoogle Scholar
  8. 8.
    Malm, P., Brun, A., Bengtsson, E.: Simulation of bright-field microscopy images depicting pap-smear specimen. Cytometry Part A 87, 212–226 (2015)CrossRefGoogle Scholar
  9. 9.
    Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)CrossRefGoogle Scholar
  10. 10.
    Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)CrossRefGoogle Scholar
  11. 11.
    Sorokin, D.V., Peterlík, I., Ulman, V., Svoboda, D., Maška, M.: Model-based generation of synthetic 3D time-lapse sequences of motile cells with growing filopodia. In: IEEE Internationl Symposium on Biomedical Imaging, pp. 822–826 (2017)Google Scholar
  12. 12.
    Sorokin, D.V., et al.: FiloGen: a model-based generator of synthetic 3D time-lapse sequences of single motile cells with growing and branching filopodia. IEEE Trans. Med. Imaging 37(12), 2630–2641 (2018).  https://doi.org/10.1109/TMI.2018.2845884CrossRefGoogle Scholar
  13. 13.
    Svoboda, D., Ulman, V.: MitoGen: a framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans. Med. Imaging 36(1), 310–321 (2017)CrossRefGoogle Scholar
  14. 14.
    R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing (2010). http://www.r-project.org
  15. 15.
    Tesar, L., Smutek, D., Shimizu, A., Kobatake, H.: 3D extension of Haralick texture features for medical image analysis. In: Proceedings of the Fourth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, SPPRA 2007, pp. 350–355. ACTA Press, Anaheim (2007)Google Scholar
  16. 16.
    Ulman, V., Svoboda, D., Nykter, M., Kozubek, M., Ruusuvuori, P.: Virtual cell imaging: a review on simulation methods employed in image cytometry. Cytometry Part A 89(12), 1057–1072 (2016)CrossRefGoogle Scholar
  17. 17.
    Wilk, M.B., Gnanadesikan, R.: Probability plotting methods for the analysis for the analysis of data. Biometrika 55(1), 1–17 (1968)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Biomedical Image AnalysisMasaryk UniversityBrnoCzech Republic

Personalised recommendations