Advertisement

HANDS18: Methods, Techniques and Applications for Hand Observation

  • Iason Oikonomidis
  • Guillermo Garcia-HernandoEmail author
  • Angela Yao
  • Antonis Argyros
  • Vincent Lepetit
  • Tae-Kyun Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11134)

Abstract

This report outlines the proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (HANDS 2018). The fourth instantiation of this workshop attracted significant interest from both academia and the industry. The program of the workshop included regular papers that are published as the workshop’s proceedings, extended abstracts, invited posters, and invited talks. Topics of the submitted works and invited talks and posters included novel methods for hand pose estimation from RGB, depth, or skeletal data, datasets for special cases and real-world applications, and techniques for hand motion re-targeting and hand gesture recognition. The invited speakers are leaders in their respective areas of specialization, coming from both industry and academia. The main conclusions that can be drawn are the turn of the community towards RGB data and the maturation of some methods and techniques, which in turn has led to increasing interest for real-world applications.

Keywords

Hand detection Hand pose estimation Hand tracking Gesture recognition Hand-object interaction Hand pose dataset 

References

  1. 1.
    Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: people detection and articulated pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (2017)Google Scholar
  2. 2.
    Antotsiou, D., Garcia-Hernando, G., Kim, T.K.: Task-oriented hand motion retargeting for dexterous manipulation imitation. In: Proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  3. 3.
    Barbu, A., Myanganbayar, B., Mata, C., Dekel, G., Ben-Yosef, G., Katz, B.: A new dataset and human benchmark for partially-occluded hand-pose recognition during hand-object interactions from monocular RGB images. In: Extended Abstract Presentation at the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  4. 4.
    Baulig, G., Gulde, T., Curio, C.: Adapting egocentric visual hand pose estimation towards a robot-controlled exoskeleton. In: Proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  5. 5.
    Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3D hand pose estimation from monocular RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 678–694. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01231-1_41CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation (2017).  https://doi.org/10.1109/CVPR.2018.00742
  7. 7.
    De Smedt, Q., Wannous, H., Vandeborre, J.P., Guerry, J., Le Saux, B., Filliat, D.: SHREC’17 track: 3D hand gesture recognition using a depth and skeletal dataset (2017).  https://doi.org/10.2312/3dor.20171049
  8. 8.
    De Smedt, Q., Wannous, H., Vandeborre, J.P.: Skeleton-based dynamic hand gesture recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1206–1214 (2016).  https://doi.org/10.1109/CVPRW.2016.153
  9. 9.
    Duan, L., Shen, M., Cui, S., Guo, Z., Oliver, D.: Estimating 2D multi-hand poses from single depth images. In: Proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  10. 10.
    Garg, G., Hegde, S., Perla, R., Jain, V., Vig, L., Hebbalaguppe, R.: DrawInAir: a lightweight gestural interface based on fingertip regression. In: Proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  11. 11.
    Ge, L., Ren, Z., Yuan, J.: Point-to-point regression PointNet for 3D hand pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 489–505. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01261-8_29CrossRefGoogle Scholar
  12. 12.
    Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM networks. In: Proceedings of the International Joint Conference on Neural Networks, vol. 5, pp. 2047–2052 (2005).  https://doi.org/10.1109/IJCNN.2005.1556215
  13. 13.
    Han, S., Liu, B., Wang, R., Ye, Y., Twigg, C.D., Kin, K.: Online optical marker-based hand tracking with deep labels. ACM Trans. Graph. 37(4), 1–10 (2018).  https://doi.org/10.1145/3197517.3201399CrossRefGoogle Scholar
  14. 14.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV 2017 (2017)Google Scholar
  15. 15.
    Hochreiter, S., Urgen Schmidhuber, J.: Long short-term memory. Neural Comput. 8, 1735–1780 (1997).  https://doi.org/10.1162/neco.1997.9.8.1735CrossRefGoogle Scholar
  16. 16.
    Hou, J., Wang, G., Chen, X., Xue, J.H., Zhu, R., Yang, H.: Spatial-temporal attention res-TCN for skeleton-based dynamic hand gesture recognition. In: Proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  17. 17.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 2261–2269 (2017).  https://doi.org/10.1109/CVPR.2017.243
  18. 18.
    Iqbal, U., Molchanov, P., Breuel, T., Gall, J., Kautz, J.: Hand pose estimation via latent 2.5D heatmap regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 125–143. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01252-6_8CrossRefGoogle Scholar
  19. 19.
    Li, S., Wöhlke, J., Lee, D.: Model-based hand pose estimation for generalized hand shape with spatial transformer network. In: Extended Abstract Presentation at the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  20. 20.
    Mandery, C., Terlemez, Ö., Do, M., Vahrenkamp, N., Asfour, T.: The KIT whole-body human motion database. In: International Conference on Advanced Robotics, ICAR, pp. 329–336 (2015).  https://doi.org/10.1109/ICAR.2015.7251476
  21. 21.
    Mueller, F., et al.: GANerated hands for real-time 3D hand tracking from monocular RGB. In: CVPR 2018 (2018)Google Scholar
  22. 22.
    Mueller, F., Mehta, D., Sotnychenko, O., Sridhar, S., Casas, D., Theobalt, C.: Real-time hand tracking under occlusion from an egocentric RGB-D sensor. arXiv preprint arXiv:1704.02201 (2017).  https://doi.org/10.1109/ICCV.2017.131
  23. 23.
    Nguyen, L.H., Quan, L.M., Kim, Y.G.: 3D hand pose estimation from monocular RGB images using advanced conditional GAN. In: Extended Abstract Presentation at the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  24. 24.
    Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks (2018)Google Scholar
  25. 25.
    Pintea, S.L., Zheng, J., Li, X., Bank, P.J.M., van Hilten, J.J., van Gemert, J.: Hand-tremor frequency estimation in videos. In: Proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (2018)Google Scholar
  26. 26.
    Sridhar, S., Mueller, F., Zollhöfer, M., Casas, D., Oulasvirta, A., Theobalt, C.: Real-time joint tracking of a hand manipulating an object from RGB-D input. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 294–310. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46475-6_19CrossRefGoogle Scholar
  27. 27.
    Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion tracking using RGB and depth data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2456–2463 (2013).  https://doi.org/10.1109/ICCV.2013.305
  28. 28.
    Sridhar, S., Rhodin, H., Seidel, H.P., Oulasvirta, A., Theobalt, C.: Real-time hand tracking using a sum of anisotropic gaussians model. In: Proceedings - 2014 International Conference on 3D Vision, 3DV 2014, pp. 319–326 (2015).  https://doi.org/10.1109/3DV.2014.37
  29. 29.
    Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.: Robust articulated-ICP for real-time hand tracking. In: Computer Graphics Forum (2015)Google Scholar
  30. 30.
    Taylor, J., et al.: Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Trans. Graph. 35(4), 1–12 (2016).  https://doi.org/10.1145/2897824.2925965CrossRefGoogle Scholar
  31. 31.
    Tkach, A., Pauly, M., Tagliasacchi, A.: Sphere-meshes for real-time hand modeling and tracking. ACM Trans. Graph. 35(6), 1–11 (2016).  https://doi.org/10.1145/2980179.2980226CrossRefGoogle Scholar
  32. 32.
    Tkach, A., Tagliasacchi, A., Remelli, E., Pauly, M., Fitzgibbon, A.: Online generative model personalization for hand tracking. ACM Trans. Graph. 36(6), 1–11 (2017).  https://doi.org/10.1145/3130800.3130830CrossRefGoogle Scholar
  33. 33.
    Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. (SIGGRAPH 2014) 33(5), 1–10 (2014).  https://doi.org/10.1145/2629500CrossRefGoogle Scholar
  34. 34.
    Tsoli, A., Argyros, A.A.: Joint 3D tracking of a deformable object in interaction with a hand. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 504–520. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01264-9_30CrossRefGoogle Scholar
  35. 35.
    Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016).  https://doi.org/10.1109/CVPR.2016.511
  36. 36.
    Wu, X., Finnegan, D., O’Neill, E., Yang, Y.-L.: HandMap: robust hand pose estimation via intermediate dense guidance map supervision. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 246–262. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01270-0_15CrossRefGoogle Scholar
  37. 37.
    Ye, Q., Kim, T.-K.: Occlusion-aware hand pose estimation using hierarchical mixture density network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 817–834. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01249-6_49CrossRefGoogle Scholar
  38. 38.
    Yuan, S., et al.: Depth-based 3D hand pose estimation: from current achievements to future goals. In: CVPR 2018 (2018)Google Scholar
  39. 39.
    Zhou, X., Wan, Q., Wei, Z., Xue, X., Wei, Y.: Model-based deep hand pose estimation. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 2421–2427 (2016)Google Scholar
  40. 40.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2242–2251 (2017).  https://doi.org/10.1109/ICCV.2017.244

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.University of CreteHeraklionGreece
  3. 3.Foundation for Research and TechnologyHeraklionGreece
  4. 4.University of BordeauxBordeauxFrance
  5. 5.National University of SingaporeSingaporeSingapore

Personalised recommendations