Advertisement

Non-rigid 3D Shape Registration Using an Adaptive Template

  • Hang DaiEmail author
  • Nick PearsEmail author
  • William SmithEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11132)

Abstract

We present a new fully-automatic non-rigid 3D shape registration (morphing) framework comprising (1) a new 3D landmarking and pose normalisation method; (2) an adaptive shape template method to improve the convergence of registration algorithms and achieve a better final shape correspondence and (3) a new iterative registration method that combines Iterative Closest Points with Coherent Point Drift (CPD) to achieve a more stable and accurate correspondence establishment than standard CPD. We call this new morphing approach Iterative Coherent Point Drift (ICPD). Our proposed framework is evaluated qualitatively and quantitatively on three datasets: Headspace, BU3D and a synthetic LSFM dataset, and is compared with several other methods. The proposed framework is shown to give state-of-the-art performance.

Keywords

3D registration 3D shape morphing 3D morphable models 

References

  1. 1.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: Proceedings of CVPR, pp. 2879–2886 (2012)Google Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)Google Scholar
  3. 3.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  4. 4.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184 (2004)Google Scholar
  5. 5.
    Gerig, T., et al.: Morphable face models - an open framework. CoRR abs/1709.08398 (2017)Google Scholar
  6. 6.
    Duncan, C., Armstrong, R.: Alder hey headspace project (2016)Google Scholar
  7. 7.
    Robertson, B., Dai, H., Pears, N., Duncan, C.: A morphable model of the human head validating the outcomes of an age-dependent scaphocephaly correction. Int. J. Oral Maxillofac. Surg. 46, 68 (2017)CrossRefGoogle Scholar
  8. 8.
    Dai, H., Pears, N., Smith, W.A.P., Duncan, C.: A 3D morphable model of craniofacial shape and texture variation. In: The IEEE International Conference on Computer Vision (ICCV), October 2017Google Scholar
  9. 9.
    Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3D dynamic facial expression database. In: 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2008, pp. 1–6. IEEE (2008)Google Scholar
  10. 10.
    Booth, J., Roussos, A., Ponniah, A., Dunaway, D., Zafeiriou, S.: Large scale 3d morphable models. Int. J. Comput. Vis. 126(2–4), 233–254 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 109–116 (2007)Google Scholar
  12. 12.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)CrossRefGoogle Scholar
  13. 13.
    Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: Proceedings of CVPR, pp. 1–8 (2007)Google Scholar
  14. 14.
    Hontani, H., Matsuno, T., Sawada, Y.: Robust nonrigid ICP using outlier-sparsity regularization. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 174–181. IEEE (2012)Google Scholar
  15. 15.
    Cheng, S., Marras, I., Zafeiriou, S., Pantic, M.: Active nonrigid ICP algorithm. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–8. IEEE (2015)Google Scholar
  16. 16.
    Cheng, S., Marras, I., Zafeiriou, S., Pantic, M.: Statistical non-rigid ICP algorithm and its application to 3D face alignment. Image Vis. Comput. 58, 3–12 (2017)CrossRefGoogle Scholar
  17. 17.
    Kou, Q., Yang, Y., Du, S., Luo, S., Cai, D.: A modified non-rigid ICP algorithm for registration of chromosome images. In: Huang, D.-S., Jo, K.-H. (eds.) ICIC 2016, Part II. LNCS, vol. 9772, pp. 503–513. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42294-7_45CrossRefGoogle Scholar
  18. 18.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)CrossRefGoogle Scholar
  19. 19.
    Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: 2000 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 44–51 IEEE (2000)Google Scholar
  20. 20.
    Yang, J.: The thin plate spline robust point matching (TPS-RPM) algorithm: a revisit. Pattern Recogn. Lett. 32(7), 910–918 (2011)CrossRefGoogle Scholar
  21. 21.
    Lee, J.H., Won, C.H.: Topology preserving relaxation labeling for nonrigid point matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 427–432 (2011)CrossRefGoogle Scholar
  22. 22.
    Lee, A.X., Goldstein, M.A., Barratt, S.T., Abbeel, P.: A non-rigid point and normal registration algorithm with applications to learning from demonstrations. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 935–942. IEEE (2015)Google Scholar
  23. 23.
    Ma, J., Zhao, J., Jiang, J., Zhou, H.: Non-rigid point set registration with robust transformation estimation under manifold regularization. In: AAAI, pp. 4218–4224 (2017)Google Scholar
  24. 24.
    Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. In: Computer Graphics Forum, vol. 27, pp. 1421–1430. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  25. 25.
    Wang, P., Wang, P., Qu, Z., Gao, Y., Shen, Z.: A refined coherent point drift (CPD) algorithm for point set registration. Sci. China Inf. Sci. 54(12), 2639–2646 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Golyanik, V., Taetz, B., Reis, G., Stricker, D.: Extended coherent point drift algorithm with correspondence priors and optimal subsampling. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)Google Scholar
  27. 27.
    Hu, Y., Rijkhorst, E.-J., Manber, R., Hawkes, D., Barratt, D.: Deformable vessel-based registration using landmark-guided coherent point drift. In: Liao, H., Edwards, P.J.E., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 60–69. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15699-1_7CrossRefGoogle Scholar
  28. 28.
    Trimech, I.H., Maalej, A., Amara, N.E.B.: 3D facial expression recognition using nonrigid CPD registration method. In: 2017 International Conference on Information and Digital Technologies (IDT), pp. 478–481. IEEE (2017)Google Scholar
  29. 29.
    Ge, S., Fan, G., Ding, M.: Non-rigid point set registration with global-local topology preservation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 245–251. IEEE (2014)Google Scholar
  30. 30.
    Zhou, Z., Zheng, J., Dai, Y., Zhou, Z., Chen, S.: Robust non-rigid point set registration using student’s-t mixture model. PloS one 9(3), e91381 (2014)CrossRefGoogle Scholar
  31. 31.
    Lüthi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1860–1873 (2017)CrossRefGoogle Scholar
  32. 32.
    Creusot, C., Pears, N.E., Austin, J.: A machine-learning approach to keypoint detection and landmarking on 3D meshes. Int. J. Comput. Vis. 1, 146–179 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations