Advertisement

Incomplete Multi-view Clustering via Graph Regularized Matrix Factorization

  • Jie Wen
  • Zheng Zhang
  • Yong XuEmail author
  • Zuofeng Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11132)

Abstract

Clustering with incomplete views is a challenge in multi-view clustering. In this paper, we provide a novel and simple method to address this issue. Specially, the proposed method simultaneously exploits the local information of each view and the complementary information among views to learn the common latent representation for all samples, which can greatly improve the compactness and discriminability of the obtained representation. Compared with the conventional graph embedding methods, the proposed method does not introduce any extra regularization term and corresponding penalty parameter to preserve the local structure of data, and thus does not increase the burden of extra parameter selection. By imposing the orthogonal constraint on the basis matrix of each view, the proposed method is able to handle the out-of-sample. Moreover, the proposed method can be viewed as a unified framework for multi-view learning since it can handle both incomplete and complete multi-view clustering and classification tasks. Extensive experiments conducted on several multi-view datasets prove that the proposed method can significantly improve the clustering performance.

Keywords

Multi-view clustering Incomplete view Common latent representation Out-of-sample 

Notes

Acknowledgments

This work is supported in part by Economic, Trade and information Commission of Shenzhen Municipality (Grant no. 20170504160426188).

References

  1. 1.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT, pp. 92–100. ACM (1998)Google Scholar
  2. 2.
    Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: IJCAI, pp. 2598–2604 (2013)Google Scholar
  3. 3.
    Fei, L., Xu, Y., Zhang, B., Fang, X., Wen, J.: Low-rank representation integrated with principal line distance for contactless palmprint recognition. Neurocomputing 218, 264–275 (2016)CrossRefGoogle Scholar
  4. 4.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)CrossRefGoogle Scholar
  5. 5.
    Gao, H., Peng, Y., Jian, S.: Incomplete multi-view clustering. In: Shi, Z., Vadera, S., Li, G. (eds.) IIP 2016. IAICT, vol. 486, pp. 245–255. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48390-0_25CrossRefGoogle Scholar
  6. 6.
    Guo, Y.: Convex subspace representation learning from multi-view data. In: AAAI, vol. 1, pp. 387–393 (2013)Google Scholar
  7. 7.
    Huang, D., Sun, J., Wang, Y.: The buaa-visnir face database instructions. Technical report IRIP-TR-12-FR-001, School of Computational Science and Engineering, Beihang University, Beijing, China (2012)Google Scholar
  8. 8.
    Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In: NIPS, pp. 1413–1421 (2011)Google Scholar
  9. 9.
    Li, M., Xue, X.B., Zhou, Z.H.: Exploiting multi-modal interactions: a unified framework. In: IJCAI, pp. 1120–1125 (2009)Google Scholar
  10. 10.
    Li, Y., Nie, F., Huang, H., Huang, J.: Large-scale multi-view spectral clustering via bipartite graph. In: AAAI, pp. 2750–2756 (2015)Google Scholar
  11. 11.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE TPAMI 35(1), 171–184 (2013)CrossRefGoogle Scholar
  12. 12.
    Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: ICML, pp. 689–696 (2011)Google Scholar
  13. 13.
    Qian, B., Shen, X., Gu, Y., Tang, Z., Ding, Y.: Double constrained NMF for partial multi-view clustering. In: DICTA, pp. 1–7. IEEE (2016)Google Scholar
  14. 14.
    Qin, J., et al.: Binary coding for partial action analysis with limited observation ratios. In: CVPR, pp. 146–155 (2017)Google Scholar
  15. 15.
    Qin, J., et al.: Zero-shot action recognition with error-correcting output codes. In: CVPR, pp. 2833–2842 (2017)Google Scholar
  16. 16.
    Rai, N., Negi, S., Chaudhury, S., Deshmukh, O.: Partial multi-view clustering using graph regularized NMF. In: ICPR, pp. 2192–2197. IEEE (2016)Google Scholar
  17. 17.
    Shao, W., He, L., Yu, P.S.: Multiple incomplete views clustering via weighted nonnegative matrix factorization with \(L_{2,1}\) regularization. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 318–334. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23528-8_20CrossRefGoogle Scholar
  18. 18.
    Trivedi, A., Rai, P., Daumé III, H., DuVall, S.L.: Multiview clustering with incomplete views. In: NIPSW, pp. 1–7 (2010)Google Scholar
  19. 19.
    Wen, J., et al.: Robust sparse linear discriminant analysis. In: IEEE TCSVT (2018).  https://doi.org/10.1109/TCSVT.2018.2799214
  20. 20.
    Wen, J., Fang, X., Xu, Y., Tian, C., Fei, L.: Low-rank representation with adaptive graph regularization. Neural Netw. 108, 83–96 (2018)CrossRefGoogle Scholar
  21. 21.
    Wen, J., Han, N., Fang, X., Fei, L., Yan, K., Zhan, S.: Low-rank preserving projection via graph regularized reconstruction. In: IEEE TCYB, vol. 99, pp. 1–13 (2018).  https://doi.org/10.1109/TCYB.2018.2799862
  22. 22.
    Zhang, Y., Zhang, Z., Qin, J., Zhang, L., Li, B., Li, F.: Semi-supervised local multi-manifold isomap by linear embedding for feature extraction. Pattern Recogn. 76, 662–678 (2018)CrossRefGoogle Scholar
  23. 23.
    Zhang, Z., Zhao, M., Chow, T.W.: Binary-and multi-class group sparse canonical correlation analysis for feature extraction and classification. IEEE TKDE 25(10), 2192–2205 (2013)Google Scholar
  24. 24.
    Zhang, Z., Lai, Z., Xu, Y., Shao, L., Wu, J., Xie, G.S.: Discriminative elastic-net regularized linear regression. IEEE TIP 26(3), 1466–1481 (2017)MathSciNetGoogle Scholar
  25. 25.
    Zhang, Z., et al.: Highly-economized multi-view binary compression for scalable image clustering. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part XII. LNCS, vol. 11216, pp. 731–748. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01258-8_44CrossRefGoogle Scholar
  26. 26.
    Zhang, Z., Shao, L., Xu, Y., Liu, L., Yang, J.: Marginal representation learning with graph structure self-adaptation. IEEE TNNLS (2017).  https://doi.org/10.1109/TNNLS.2017.2772264CrossRefGoogle Scholar
  27. 27.
    Zhang, Z., Xu, Y., Shao, L., Yang, J.: Discriminative block-diagonal representation learning for image recognition. IEEE TNNLS 29(7), 3111–3125 (2018)MathSciNetGoogle Scholar
  28. 28.
    Zhao, H., Liu, H., Fu, Y.: Incomplete multi-modal visual data grouping. In: IJCAI, pp. 2392–2398 (2016)Google Scholar
  29. 29.
    Zhao, J., Xie, X., Xu, X., Sun, S.: Multi-view learning overview: recent progress and new challenges. Inf. Fusion 38, 43–54 (2017)CrossRefGoogle Scholar
  30. 30.
    Zhi, S.Y., Zhou, H.: Partial multi-view clustering. In: AAAI, pp. 1968–1974 (2014)Google Scholar
  31. 31.
    Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bio-Computing Research CenterHarbin Institute of Technology, ShenzhenShenzhenChina
  2. 2.The University of QueenslandBrisbaneAustralia

Personalised recommendations