Advertisement

Efficient Texture Retrieval Using Multiscale Local Extrema Descriptors and Covariance Embedding

  • Minh-Tan PhamEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11132)

Abstract

We present an efficient method for texture retrieval using multiscale feature extraction and embedding based on the local extrema keypoints. The idea is to first represent each texture image by its local maximum and local minimum pixels. The image is then divided into regular overlapping blocks and each one is characterized by a feature vector constructed from the radiometric, geometric and structural information of its local extrema. All feature vectors are finally embedded into a covariance matrix which will be exploited for dissimilarity measurement within retrieval task. Thanks to the method’s simplicity, multiscale scheme can be easily implemented to improve its scale-space representation capacity. We argue that our handcrafted features are easy to implement, fast to run but can provide very competitive performance compared to handcrafted and CNN-based learned descriptors from the literature. In particular, the proposed framework provides highly competitive retrieval rate for several texture databases including 94.95\(\%\) for MIT Vistex, 79.87\(\%\) for Stex, 76.15\(\%\) for Outex TC-00013 and 89.74\(\%\) for USPtex.

Keywords

Texture retrieval Handcrafted features Local extrema Feature covariance matrix 

References

  1. 1.
    Outex texture database. University of Oulu, Available onlineGoogle Scholar
  2. 2.
    USPtex dataset, Scientific Computing Group (2012). http://fractal.ifsc.usp.br/dataset/USPtex.php
  3. 3.
    Vision texture, MIT Vision and Modeling group. http://vismod.media.mit.edu/pub/VisTex/
  4. 4.
    Alzu’bi, A., Amira, A., Ramzan, N.: Semantic content-based image retrieval: a comprehensive study. J. Vis. Commun. Image Represent. 32, 20–54 (2015)CrossRefGoogle Scholar
  5. 5.
    Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010).  https://doi.org/10.1109/TIP.2009.2033400MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cusano, C., Napoletano, P., Schettini, R.: Evaluating color texture descriptors under large variations of controlled lighting conditions. JOSA A 33(1), 17–30 (2016)CrossRefGoogle Scholar
  7. 7.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)Google Scholar
  8. 8.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002).  https://doi.org/10.1109/83.982822MathSciNetCrossRefGoogle Scholar
  9. 9.
    Förstner, W., Moonen, B.: A metric for covariance matrices. In: Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds.) Geodesy-The Challenge of the 3rd Millennium, pp. 299–309. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-662-05296-9_31CrossRefGoogle Scholar
  10. 10.
    Guo, J.M., Prasetyo, H.: Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Trans. Image Process. 24(3), 1010–1024 (2015).  https://doi.org/10.1109/TIP.2014.2372619MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guo, J.M., Prasetyo, H., Chen, J.H.: Content-based image retrieval using error diffusion block truncation coding features. IEEE Trans. Circuits Syst. Video Technol. 25(3), 466–481 (2015).  https://doi.org/10.1109/TCSVT.2014.2358011CrossRefGoogle Scholar
  12. 12.
    Guo, J.M., Prasetyo, H., Su, H.S.: Image indexing using the color and bit pattern feature fusion. J. Vis. Commun. Image Repres. 24(8), 1360–1379 (2013).  https://doi.org/10.1016/j.jvcir.2013.09.005CrossRefGoogle Scholar
  13. 13.
    Guo, J.M., Prasetyo, H., Wang, N.J.: Effective image retrieval system using dot-diffused block truncation coding features. IEEE Trans. Multimedia 17(9), 1576–1590 (2015).  https://doi.org/10.1109/TMM.2015.2449234CrossRefGoogle Scholar
  14. 14.
    Jacob, I.J., Srinivasagan, K., Jayapriya, K.: Local oppugnant color texture pattern for image retrieval system. Pattern Recogn. Lett. 42, 72–78 (2014).  https://doi.org/10.1016/j.patrec.2014.01.017CrossRefGoogle Scholar
  15. 15.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)Google Scholar
  16. 16.
    Kwitt, R., Meerwald, P.: Salzburg texture image database. http://www.wavelab.at/sources/STex/
  17. 17.
    Kwitt, R., Meerwald, P., Uhl, A.: Efficient texture image retrieval using copulas in a Bayesian framework. IEEE Trans. Image Process. 20(7), 2063–2077 (2011).  https://doi.org/10.1109/TIP.2011.2108663MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kwitt, R., Uhl, A.: Image similarity measurement by Kullback-Leibler divergences between complex wavelet subband statistics for texture retrieval. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 933–936 (2008).  https://doi.org/10.1109/ICIP.2008.4711909
  19. 19.
    Lasmar, N.E., Berthoumieu, Y.: Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans. Image Process. 23(5), 2246–2261 (2014).  https://doi.org/10.1109/TIP.2014.2313232MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, C., Duan, G., Zhong, F.: Rotation invariant texture retrieval considering the scale dependence of Gabor wavelet. IEEE Trans. Image Process. 24(8), 2344–2354 (2015).  https://doi.org/10.1109/TIP.2015.2422575MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, C., Huang, Y., Zhu, L.: Color texture image retrieval based on Gaussian copula models of Gabor wavelets. Pattern Recognit. 64, 118–129 (2017).  https://doi.org/10.1016/j.patcog.2016.10.030CrossRefGoogle Scholar
  22. 22.
    Murala, S., Maheshwari, R., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012).  https://doi.org/10.1109/TIP.2012.2188809MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Murala, S., Wu, Q.J., Balasubramanian, R., Maheshwari, R.: Joint histogram between color and local extrema patterns for object tracking. In: IS&T/SPIE Electronic Imaging, pp. 86630T–86630T-7. International Society for Optics and Photonics (2013).  https://doi.org/10.1117/12.2002185
  24. 24.
    Napoletano, P.: Hand-crafted vs learned descriptors for color texture classification. In: Bianco, S., Schettini, R., Trémeau, A., Tominaga, S. (eds.) CCIW 2017. LNCS, vol. 10213, pp. 259–271. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56010-6_22CrossRefGoogle Scholar
  25. 25.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002).  https://doi.org/10.1109/TPAMI.2002.1017623CrossRefzbMATHGoogle Scholar
  26. 26.
    Pham, M.T., Mercier, G., Michel, J.: Pointwise graph-based local texture characterization for very high resolution multispectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(5), 1962–1973 (2015)CrossRefGoogle Scholar
  27. 27.
    Pham, M.T.: Pointwise approach for texture analysis and characterization from very high resolution remote sensing images. Ph.D. thesis, Télécom Bretagne (2016)Google Scholar
  28. 28.
    Pham, M.T., Mercier, G., Bombrun, L.: Color texture image retrieval based on local extrema features and riemannian distance. J. Imaging 3(4), 43 (2017)CrossRefGoogle Scholar
  29. 29.
    Pham, M.T., Mercier, G., Bombrun, L., Michel, J.: Texture and color-based image retrieval using the local extrema features and riemannian distance. arXiv preprint arXiv:1611.02102 (2016)
  30. 30.
    Pham, M.T., Mercier, G., Michel, J.: Textural features from wavelets on graphs for very high resolution panchromatic pléiades image classification. Fr. J. Photogram Remote. Sens. 208, 131–136 (2014)Google Scholar
  31. 31.
    Pham, M.T., Mercier, G., Michel, J.: Change detection between SAR images using a pointwise approach and graph theory. IEEE Trans. Geosci. Remote Sens. 54(4), 2020–2032 (2016)CrossRefGoogle Scholar
  32. 32.
    Pham, M.T., Mercier, G., Michel, J.: PW-COG: an effective texture descriptor for VHR satellite imagery using a pointwise approach on covariance matrix of oriented gradients. IEEE Trans. Geosci. Remote Sens. 54(6), 3345–3359 (2016)CrossRefGoogle Scholar
  33. 33.
    Pham, M.T., Mercier, G., Regniers, O., Michel, J.: Texture retrieval from VHR optical remote sensed images using the local extrema descriptor with application to vineyard parcel detection. Remote Sens. 8(5), 368 (2016)CrossRefGoogle Scholar
  34. 34.
    Pham, M.T., Mercier, G., Regniers, O., Bombrun, L., Michel, J.: Texture retrieval from very high resolution remote sensing images using local extrema-based descriptors. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1839–1842. IEEE (2016)Google Scholar
  35. 35.
    Raghuwanshi, G., Tyagi, V.: A survey on texture image retrieval. In: Satapathy, S.C., Raju, K.S., Mandal, J.K., Bhateja, V. (eds.) Proceedings of the Second International Conference on Computer and Communication Technologies. AISC, vol. 381, pp. 427–435. Springer, New Delhi (2016).  https://doi.org/10.1007/978-81-322-2526-3_44CrossRefGoogle Scholar
  36. 36.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  37. 37.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  38. 38.
    Singh, C., Walia, E., Kaur, K.P.: Color texture description with novel local binary patterns for effective image retrieval. Pattern Recognit. 76, 50–68 (2018)CrossRefGoogle Scholar
  39. 39.
    Subrahmanyam, M., Maheshwari, R., Balasubramanian, R.: Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process. 92(6), 1467–1479 (2012).  https://doi.org/10.1016/j.sigpro.2011.12.005CrossRefGoogle Scholar
  40. 40.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010).  https://doi.org/10.1109/TIP.2010.2042645MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Tyagi, V.: Content-based image retrieval techniques: a review. Content-Based Image Retrieval, pp. 29–48. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-6759-4_2CrossRefzbMATHGoogle Scholar
  42. 42.
    Tzelepi, M., Tefas, A.: Deep convolutional learning for content based image retrieval. Neurocomputing 275, 2467–2478 (2018)CrossRefGoogle Scholar
  43. 43.
    Verdoolaege, G., De Backer, S., Scheunders, P.: Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 169–172 (2008).  https://doi.org/10.1109/ICIP.2008.4711718
  44. 44.
    Verma, M., Raman, B.: Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit. Signal Process. 51, 62–72 (2016).  https://doi.org/10.1016/j.dsp.2016.02.002MathSciNetCrossRefGoogle Scholar
  45. 45.
    Verma, M., Raman, B.: Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimedia Tools Appl. 77(10), 11843–11866 (2018)CrossRefGoogle Scholar
  46. 46.
    Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165, 255–269 (2015).  https://doi.org/10.1016/j.neucom.2015.03.015CrossRefGoogle Scholar
  47. 47.
    Yang, H.y., Liang, L.l., Zhang, C., Wang, X.b., Niu, P.p., Wang, X.y.: Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform. Soft Comput. 1–16 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IRISA - University of Southern BrittanyVannesFrance

Personalised recommendations