Efficient Texture Retrieval Using Multiscale Local Extrema Descriptors and Covariance Embedding
Abstract
We present an efficient method for texture retrieval using multiscale feature extraction and embedding based on the local extrema keypoints. The idea is to first represent each texture image by its local maximum and local minimum pixels. The image is then divided into regular overlapping blocks and each one is characterized by a feature vector constructed from the radiometric, geometric and structural information of its local extrema. All feature vectors are finally embedded into a covariance matrix which will be exploited for dissimilarity measurement within retrieval task. Thanks to the method’s simplicity, multiscale scheme can be easily implemented to improve its scale-space representation capacity. We argue that our handcrafted features are easy to implement, fast to run but can provide very competitive performance compared to handcrafted and CNN-based learned descriptors from the literature. In particular, the proposed framework provides highly competitive retrieval rate for several texture databases including 94.95\(\%\) for MIT Vistex, 79.87\(\%\) for Stex, 76.15\(\%\) for Outex TC-00013 and 89.74\(\%\) for USPtex.
Keywords
Texture retrieval Handcrafted features Local extrema Feature covariance matrixReferences
- 1.Outex texture database. University of Oulu, Available onlineGoogle Scholar
- 2.USPtex dataset, Scientific Computing Group (2012). http://fractal.ifsc.usp.br/dataset/USPtex.php
- 3.Vision texture, MIT Vision and Modeling group. http://vismod.media.mit.edu/pub/VisTex/
- 4.Alzu’bi, A., Amira, A., Ramzan, N.: Semantic content-based image retrieval: a comprehensive study. J. Vis. Commun. Image Represent. 32, 20–54 (2015)CrossRefGoogle Scholar
- 5.Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010). https://doi.org/10.1109/TIP.2009.2033400MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Cusano, C., Napoletano, P., Schettini, R.: Evaluating color texture descriptors under large variations of controlled lighting conditions. JOSA A 33(1), 17–30 (2016)CrossRefGoogle Scholar
- 7.Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)Google Scholar
- 8.Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002). https://doi.org/10.1109/83.982822MathSciNetCrossRefGoogle Scholar
- 9.Förstner, W., Moonen, B.: A metric for covariance matrices. In: Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds.) Geodesy-The Challenge of the 3rd Millennium, pp. 299–309. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05296-9_31CrossRefGoogle Scholar
- 10.Guo, J.M., Prasetyo, H.: Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Trans. Image Process. 24(3), 1010–1024 (2015). https://doi.org/10.1109/TIP.2014.2372619MathSciNetCrossRefGoogle Scholar
- 11.Guo, J.M., Prasetyo, H., Chen, J.H.: Content-based image retrieval using error diffusion block truncation coding features. IEEE Trans. Circuits Syst. Video Technol. 25(3), 466–481 (2015). https://doi.org/10.1109/TCSVT.2014.2358011CrossRefGoogle Scholar
- 12.Guo, J.M., Prasetyo, H., Su, H.S.: Image indexing using the color and bit pattern feature fusion. J. Vis. Commun. Image Repres. 24(8), 1360–1379 (2013). https://doi.org/10.1016/j.jvcir.2013.09.005CrossRefGoogle Scholar
- 13.Guo, J.M., Prasetyo, H., Wang, N.J.: Effective image retrieval system using dot-diffused block truncation coding features. IEEE Trans. Multimedia 17(9), 1576–1590 (2015). https://doi.org/10.1109/TMM.2015.2449234CrossRefGoogle Scholar
- 14.Jacob, I.J., Srinivasagan, K., Jayapriya, K.: Local oppugnant color texture pattern for image retrieval system. Pattern Recogn. Lett. 42, 72–78 (2014). https://doi.org/10.1016/j.patrec.2014.01.017CrossRefGoogle Scholar
- 15.Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)Google Scholar
- 16.Kwitt, R., Meerwald, P.: Salzburg texture image database. http://www.wavelab.at/sources/STex/
- 17.Kwitt, R., Meerwald, P., Uhl, A.: Efficient texture image retrieval using copulas in a Bayesian framework. IEEE Trans. Image Process. 20(7), 2063–2077 (2011). https://doi.org/10.1109/TIP.2011.2108663MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Kwitt, R., Uhl, A.: Image similarity measurement by Kullback-Leibler divergences between complex wavelet subband statistics for texture retrieval. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 933–936 (2008). https://doi.org/10.1109/ICIP.2008.4711909
- 19.Lasmar, N.E., Berthoumieu, Y.: Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans. Image Process. 23(5), 2246–2261 (2014). https://doi.org/10.1109/TIP.2014.2313232MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Li, C., Duan, G., Zhong, F.: Rotation invariant texture retrieval considering the scale dependence of Gabor wavelet. IEEE Trans. Image Process. 24(8), 2344–2354 (2015). https://doi.org/10.1109/TIP.2015.2422575MathSciNetCrossRefGoogle Scholar
- 21.Li, C., Huang, Y., Zhu, L.: Color texture image retrieval based on Gaussian copula models of Gabor wavelets. Pattern Recognit. 64, 118–129 (2017). https://doi.org/10.1016/j.patcog.2016.10.030CrossRefGoogle Scholar
- 22.Murala, S., Maheshwari, R., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012). https://doi.org/10.1109/TIP.2012.2188809MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Murala, S., Wu, Q.J., Balasubramanian, R., Maheshwari, R.: Joint histogram between color and local extrema patterns for object tracking. In: IS&T/SPIE Electronic Imaging, pp. 86630T–86630T-7. International Society for Optics and Photonics (2013). https://doi.org/10.1117/12.2002185
- 24.Napoletano, P.: Hand-crafted vs learned descriptors for color texture classification. In: Bianco, S., Schettini, R., Trémeau, A., Tominaga, S. (eds.) CCIW 2017. LNCS, vol. 10213, pp. 259–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56010-6_22CrossRefGoogle Scholar
- 25.Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623CrossRefzbMATHGoogle Scholar
- 26.Pham, M.T., Mercier, G., Michel, J.: Pointwise graph-based local texture characterization for very high resolution multispectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(5), 1962–1973 (2015)CrossRefGoogle Scholar
- 27.Pham, M.T.: Pointwise approach for texture analysis and characterization from very high resolution remote sensing images. Ph.D. thesis, Télécom Bretagne (2016)Google Scholar
- 28.Pham, M.T., Mercier, G., Bombrun, L.: Color texture image retrieval based on local extrema features and riemannian distance. J. Imaging 3(4), 43 (2017)CrossRefGoogle Scholar
- 29.Pham, M.T., Mercier, G., Bombrun, L., Michel, J.: Texture and color-based image retrieval using the local extrema features and riemannian distance. arXiv preprint arXiv:1611.02102 (2016)
- 30.Pham, M.T., Mercier, G., Michel, J.: Textural features from wavelets on graphs for very high resolution panchromatic pléiades image classification. Fr. J. Photogram Remote. Sens. 208, 131–136 (2014)Google Scholar
- 31.Pham, M.T., Mercier, G., Michel, J.: Change detection between SAR images using a pointwise approach and graph theory. IEEE Trans. Geosci. Remote Sens. 54(4), 2020–2032 (2016)CrossRefGoogle Scholar
- 32.Pham, M.T., Mercier, G., Michel, J.: PW-COG: an effective texture descriptor for VHR satellite imagery using a pointwise approach on covariance matrix of oriented gradients. IEEE Trans. Geosci. Remote Sens. 54(6), 3345–3359 (2016)CrossRefGoogle Scholar
- 33.Pham, M.T., Mercier, G., Regniers, O., Michel, J.: Texture retrieval from VHR optical remote sensed images using the local extrema descriptor with application to vineyard parcel detection. Remote Sens. 8(5), 368 (2016)CrossRefGoogle Scholar
- 34.Pham, M.T., Mercier, G., Regniers, O., Bombrun, L., Michel, J.: Texture retrieval from very high resolution remote sensing images using local extrema-based descriptors. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1839–1842. IEEE (2016)Google Scholar
- 35.Raghuwanshi, G., Tyagi, V.: A survey on texture image retrieval. In: Satapathy, S.C., Raju, K.S., Mandal, J.K., Bhateja, V. (eds.) Proceedings of the Second International Conference on Computer and Communication Technologies. AISC, vol. 381, pp. 427–435. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2526-3_44CrossRefGoogle Scholar
- 36.Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
- 37.Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
- 38.Singh, C., Walia, E., Kaur, K.P.: Color texture description with novel local binary patterns for effective image retrieval. Pattern Recognit. 76, 50–68 (2018)CrossRefGoogle Scholar
- 39.Subrahmanyam, M., Maheshwari, R., Balasubramanian, R.: Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process. 92(6), 1467–1479 (2012). https://doi.org/10.1016/j.sigpro.2011.12.005CrossRefGoogle Scholar
- 40.Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010). https://doi.org/10.1109/TIP.2010.2042645MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Tyagi, V.: Content-based image retrieval techniques: a review. Content-Based Image Retrieval, pp. 29–48. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6759-4_2CrossRefzbMATHGoogle Scholar
- 42.Tzelepi, M., Tefas, A.: Deep convolutional learning for content based image retrieval. Neurocomputing 275, 2467–2478 (2018)CrossRefGoogle Scholar
- 43.Verdoolaege, G., De Backer, S., Scheunders, P.: Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 169–172 (2008). https://doi.org/10.1109/ICIP.2008.4711718
- 44.Verma, M., Raman, B.: Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit. Signal Process. 51, 62–72 (2016). https://doi.org/10.1016/j.dsp.2016.02.002MathSciNetCrossRefGoogle Scholar
- 45.Verma, M., Raman, B.: Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimedia Tools Appl. 77(10), 11843–11866 (2018)CrossRefGoogle Scholar
- 46.Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165, 255–269 (2015). https://doi.org/10.1016/j.neucom.2015.03.015CrossRefGoogle Scholar
- 47.Yang, H.y., Liang, L.l., Zhang, C., Wang, X.b., Niu, P.p., Wang, X.y.: Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform. Soft Comput. 1–16 (2018)Google Scholar