Advertisement

Knowing When to Look for What and Where: Evaluating Generation of Spatial Descriptions with Adaptive Attention

  • Mehdi GhanimifardEmail author
  • Simon Dobnik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11132)

Abstract

We examine and evaluate adaptive attention [17] (which balances the focus on visual features and focus on textual features) in generating image captions in end-to-end neural networks, in particular how adaptive attention is informative for generating spatial relations. We show that the model generates spatial relations more on the basis of textual rather than visual features and therefore confirm the previous observations that the learned visual features are missing information about geometric relations between objects.

Keywords

Image descriptions Grounded neural language model Attention model Spatial descriptions 

Notes

Acknowledgements

We are also grateful to the anonymous reviewers for their helpful comments on our earlier draft. The research reported in this paper was supported by a grant from the Swedish Research Council (VR project 2014-39) for the establishment of the Centre for Linguistic Theory and Studies in Probability (CLASP) at the University of Gothenburg.

Supplementary material

478824_1_En_14_MOESM1_ESM.pdf (153 kb)
Supplementary material 1 (pdf 153 KB)

References

  1. 1.
    Agrawal, A., Batra, D., Parikh, D., Kembhavi, A.: Don’t just assume; look and answer: overcoming priors for visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4971–4980 (2018)Google Scholar
  2. 2.
    Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 39–48 (2016)Google Scholar
  3. 3.
    Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. arXiv preprint arXiv:1412.7755 (2014)
  4. 4.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
  5. 5.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  6. 6.
    Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media Inc., Sebastopol (2009)zbMATHGoogle Scholar
  7. 7.
    Coventry, K.R., et al.: Spatial prepositions and vague quantifiers: implementing the functional geometric framework. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition 2004. LNCS (LNAI), vol. 3343, pp. 98–110. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32255-9_6CrossRefGoogle Scholar
  8. 8.
    Coventry, K.R., Garrod, S.C.: Saying, Seeing, and Acting: The Psychological Semantics of Spatial Prepositions. Psychology Press, Hove (2004)Google Scholar
  9. 9.
    Dobnik, S., Ghanimifard, M., Kelleher, J.D.: Exploring the functional and geometric bias of spatial relations using neural language models. In: Proceedings of the First International Workshop on Spatial Language Understanding (SpLU 2018) at NAACL-HLT 2018, pp. 1–11. Association for Computational Linguistics, New Orleans, 6 June 2018Google Scholar
  10. 10.
    Dobnik, S., Kelleher, J.D.: Modular networks: an approach to the top-down versus bottom-up dilemma in natural language processing. In: Forthcoming in Post-proceedings of the Conference on Logic and Machine Learning in Natural Language (LaML), vol. 1, no. 1, pp. 1–8, 12–14 June 2017Google Scholar
  11. 11.
    Herskovits, A.: Language and Spatial Cognition: An Interdisciplinary Study of the Prepositions in English. Cambridge University Press, Cambridge (1986)Google Scholar
  12. 12.
    Kelleher, J.D., Dobnik, S.: What is not where: the challenge of integrating spatial representations into deep learning architectures. CLASP Papers in Computational Linguistics, p. 41 (2017)Google Scholar
  13. 13.
    Landau, B., Jackendoff, R.: “what” and “where” in spatial language and spatial cognition. Behav. Brain Sci. 16(2), 217–238, 255–265 (1993)CrossRefGoogle Scholar
  14. 14.
    Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_48CrossRefGoogle Scholar
  15. 15.
    Liu, C., Mao, J., Sha, F., Yuille, A.L.: Attention correctness in neural image captioning. In: AAAI, pp. 4176–4182 (2017)Google Scholar
  16. 16.
    Logan, G.D., Sadler, D.D.: A computational analysis of the apprehension of spatial relations. In: Bloom, P., Peterson, M.A., Nadel, L., Garrett, M.F. (eds.) Language and Space, pp. 493–530. MIT Press, Cambridge (1996)Google Scholar
  17. 17.
    Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: adaptive attention via a visual sentinel for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 6 (2017)Google Scholar
  18. 18.
    Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)Google Scholar
  19. 19.
    Park, D.H., Hendricks, L.A., Akata, Z., Schiele, B., Darrell, T., Rohrbach, M.: Attentive explanations: justifying decisions and pointing to the evidence. arXiv preprint arXiv:1612.04757 (2016)
  20. 20.
    Ramisa, A., Wang, J., Lu, Y., Dellandrea, E., Moreno-Noguer, F., Gaizauskas, R.: Combining geometric, textual and visual features for predicting prepositions in image descriptions. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 214–220 (2015)Google Scholar
  21. 21.
    Regier, T.: The Human Semantic Potential: Spatial Language and Constrained Connectionism. MIT Press, Cambridge (1996)CrossRefGoogle Scholar
  22. 22.
    Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)Google Scholar
  23. 23.
    Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)Google Scholar
  24. 24.
    Shekhar, R., Pezzelle, S., Herbelot, A., Nabi, M., Sangineto, E., Bernardi, R.: Vision and language integration: moving beyond objects. In: IWCS 2017–12th International Conference on Computational Semantics–Short papers (2017)Google Scholar
  25. 25.
    Shekhar, R., et al.: FOIL it! find one mismatch between image and language caption. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL) (Long Papers), vol. 1, pp. 255–265 (2017)Google Scholar
  26. 26.
    Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)Google Scholar
  27. 27.
    Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  28. 28.
    Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3156–3164. IEEE (2015)Google Scholar
  29. 29.
    Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)Google Scholar
  30. 30.
    Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2, 67–78 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Linguistic Theory and Studies in Probability (CLASP), Department of Philosophy, Linguistics and Theory of ScienceUniversity of GothenburgGothenburgSweden

Personalised recommendations