Advertisement

YOLO3D: End-to-End Real-Time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud

  • Waleed Ali
  • Sherif Abdelkarim
  • Mahmoud Zidan
  • Mohamed ZahranEmail author
  • Ahmad El Sallab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11131)

Abstract

Object detection and classification in 3D is a key task in Automated Driving (AD). LiDAR sensors are employed to provide the 3D point cloud reconstruction of the surrounding environment, while the task of 3D object bounding box detection in real time remains a strong algorithmic challenge. In this paper, we build on the success of the one-shot regression meta-architecture in the 2D perspective image space and extend it to generate oriented 3D object bounding boxes from LiDAR point cloud. Our main contribution is in extending the loss function of YOLO v2 to include the yaw angle, the 3D box center in Cartesian coordinates and the height of the box as a direct regression problem. This formulation enables real-time performance, which is essential for automated driving. Our results are showing promising figures on KITTI benchmark, achieving real-time performance (40 fps) on Titan X GPU.

Keywords

3D object detection LiDAR Real-time 

References

  1. 1.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  2. 2.
    Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  3. 3.
    Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. IEEE (2017)Google Scholar
  4. 4.
    Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. arXiv preprint arXiv:1608.07916 (2016)
  5. 5.
    Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: IEEE CVPR, vol. 1, p. 3 (2017)Google Scholar
  6. 6.
    Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., Nunes, U.J.: DepthCN: vehicle detection using 3D-LIDAR and ConvNet. In: IEEE ITSC (2017)Google Scholar
  7. 7.
    Li, B.: 3D fully convolutional network for vehicle detection in point cloud. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1513–1518. IEEE (2017)Google Scholar
  8. 8.
    Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. arXiv preprint arXiv:1711.06396 (2017)
  9. 9.
    Mousavian, A., Anguelov, D., Flynn, J., Košecká, J.: 3D bounding box estimation using deep learning and geometry. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5632–5640. IEEE (2017)Google Scholar
  10. 10.
    Chabot, F., Chaouch, M., Rabarisoa, J., Teulière, C., Chateau, T.: Deep MANTA: a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 2040–2049 (2017)Google Scholar
  11. 11.
    Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3D object proposals using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1259–1272 (2018)CrossRefGoogle Scholar
  12. 12.
    Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3D object detection from RGB-D data. arXiv preprint arXiv:1711.08488 (2017)
  13. 13.
    Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3D proposal generation and object detection from view aggregation. arXiv preprint arXiv:1712.02294 (2017)
  14. 14.
    Simon, M., Milz, S., Amende, K., Gross, H.M.: Complex-YOLO: real-time 3D object detection on point clouds. arXiv preprint arXiv:1803.06199 (2018)
  15. 15.
    Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5mb model size. arXiv preprint arXiv:1602.07360 (2016)
  16. 16.
    Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
  17. 17.
    Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)
  18. 18.
    Wong, A., Shafiee, M.J., Li, F., Chwyl, B.: Tiny SSD: a tiny single-shot detection deep convolutional neural network for real-time embedded object detection. arXiv preprint arXiv:1802.06488 (2018)
  19. 19.
    Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H., Posner, I.: Vote3Deep: fast object detection in 3D point clouds using efficient convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1355–1361. IEEE (2017)Google Scholar
  20. 20.
    Farhadi, J.R.A.: YOLOv3: an incremental improvement (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Valeo AI ResearchCairoEgypt

Personalised recommendations