Advertisement

PosIX-GAN: Generating Multiple Poses Using GAN for Pose-Invariant Face Recognition

  • Avishek BhattacharjeeEmail author
  • Samik Banerjee
  • Sukhendu Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11131)

Abstract

Pose-Invariant Face Recognition (PIFR) has been a serious challenge in the general field of face recognition (FR). The performance of face recognition algorithms deteriorate due to various degradations such as pose, illuminaton, occlusions, blur, noise, aliasing, etc. In this paper, we deal with the problem of 3D pose variation of a face. for that we design and propose PosIX Generative Adversarial Network (PosIX-GAN) that has been trained to generate a set of nice (high quality) face images with 9 different pose variations, when provided with a face image in any arbitrary pose as input. The discriminator of the GAN has also been trained to perform the task of face recognition along with the job of discriminating between real and generated (fake) images. Results when evaluated using two benchmark datasets, reveal the superior performance of PosIX-GAN over state-of-the-art shallow as well as deep learning methods.

Keywords

Face recognition Pose GAN Multi-task Learning 

References

  1. 1.
    Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)
  2. 2.
    Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1859–1866 (2014)Google Scholar
  3. 3.
    Banerjee, S., Das, S.: Mutual variation of information on Transfer-CNN for face recognition with degraded probe samples. Neurocomputing 310, 299–315 (2018)CrossRefGoogle Scholar
  4. 4.
    Berthelot, D., Schumm, T., Metz, L.: Began: Boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017)
  5. 5.
    Binmore, K.: Playing for Real: A Text on Game Theory. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, J.C., Zheng, J., Patel, V.M., Chellappa, R.: Fisher vector encoded deep convolutional features for unconstrained face verification. In: IEEE International Conference on Image Processing (ICIP), pp. 2981–2985 (2016)Google Scholar
  7. 7.
    Chen, M., Xu, Z., Weinberger, K., Sha, F.: Marginalized denoising autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683 (2012)
  8. 8.
    Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)Google Scholar
  9. 9.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial features. In: ICPR International Workshop on Visual Observation of Deictic Gestures (ICPRW) (2004)Google Scholar
  10. 10.
    Gourier, N., Maisonnasse, J., Hall, D., Crowley, J.L.: Head pose estimation on low resolution images. In: Stiefelhagen, R., Garofolo, J. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 270–280. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69568-4_24CrossRefGoogle Scholar
  11. 11.
    Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. (IVC) 28(5), 807–813 (2010)CrossRefGoogle Scholar
  12. 12.
    Huang, C., Ding, X., Fang, C.: Head pose estimation based on random forests for multiclass classification. In: International Conference on Pattern Recognition (ICPR), pp. 934–937 (2010)Google Scholar
  13. 13.
    Huang, R., Zhang, S., Li, T., He, R., et al.: Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis. arXiv preprint arXiv:1704.04086 (2017)
  14. 14.
    Kan, M., Shan, S., Chen, X.: Multi-view deep network for cross-view classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4847–4855 (2016)Google Scholar
  15. 15.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)Google Scholar
  16. 16.
    Lam, L., Suen, S.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 27(5), 553–568 (1997)CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Wang, Z., Jin, H., Wassell, I.: Multi-task adversarial network for disentangled feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3743–3751 (2018)Google Scholar
  18. 18.
    Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 607–626 (2009)CrossRefGoogle Scholar
  19. 19.
    Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (BMVC), vol. 1, p. 6 (2015)Google Scholar
  20. 20.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (ICLR) (2015)Google Scholar
  21. 21.
    Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems (NIPS), pp. 2234–2242 (2016)Google Scholar
  22. 22.
    Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Comput. 4(6), 863–879 (1992)CrossRefGoogle Scholar
  23. 23.
    Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)Google Scholar
  24. 24.
    Shore, J., Johnson, R.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 26(1), 26–37 (1980)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  26. 26.
    Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: Face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873 (2015)
  27. 27.
    Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1891–1898 (2014)Google Scholar
  28. 28.
    Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2892–2900 (2015)Google Scholar
  29. 29.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014)Google Scholar
  30. 30.
    Tran, L., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3, p. 7 (2017)Google Scholar
  31. 31.
    Tu, J., Fu, Y., Hu, Y., Huang, T.: Evaluation of head pose estimation for studio data. In: Stiefelhagen, R., Garofolo, J. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 281–290. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69568-4_25CrossRefGoogle Scholar
  32. 32.
    Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)CrossRefGoogle Scholar
  33. 33.
    Yang, J., Reed, S.E., Yang, M.H., Lee, H.: Weakly-supervised disentangling with recurrent transformations for 3D view synthesis. In: Advances in Neural Information Processing Systems (NIPS), pp. 1099–1107 (2015)Google Scholar
  34. 34.
    Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., Kim, J.: Rotating your face using multi-task deep neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 676–684 (2015)Google Scholar
  35. 35.
    Yin, X., Liu, X.: Multi-task convolutional neural network for pose-invariant face recognition. IEEE Trans. Image Process. (2017)Google Scholar
  36. 36.
    Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016)
  37. 37.
    Zhu, Z., Luo, P., Wang, X., Tang, X.: Deep learning identity-preserving face space. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 113–120 (2013)Google Scholar
  38. 38.
    Zhu, Z., Luo, P., Wang, X., Tang, X.: Multi-view perceptron: a deep model for learning face identity and view representations. In: Advances in Neural Information Processing Systems (NIPS), pp. 217–225 (2014)Google Scholar
  39. 39.
    Zhu, Z., Luo, P., Wang, X., Tang, X.: Recover canonical-view faces in the wild with deep neural networks. arXiv preprint arXiv:1404.3543 (2014)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Visualization and Perception Lab, Department of Computer Science and EngineeringIIT MadrasChennaiIndia

Personalised recommendations