Advertisement

Domain Adaptive Semantic Segmentation Through Structure Enhancement

  • Fengmao LvEmail author
  • Qing Lian
  • Guowu Yang
  • Guosheng Lin
  • Sinno Jialin Pan
  • Lixin Duan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11130)

Abstract

Although fully convolutional networks have recently achieved great advances in semantic segmentation, the performance leaps heavily rely on supervision with pixel-level annotations which are extremely expensive and time-consuming to collect. Training models on synthetic data is a feasible way to relieve the annotation burden. However, the domain shift between synthetic and real images usually lead to poor generalization performance. In this work, we propose an effective method to adapt the segmentation network trained on synthetic images to real scenarios in an unsupervised fashion. To improve the adaptation performance for semantic segmentation, we enhance the structure information of the target images at both the feature level and the output level. Specifically, we enforce the segmentation network to learn a representation that encodes the target images’ visual cues through image reconstruction, which is beneficial to the structured prediction of the target images. Further more, we implement adversarial training at the output space of the segmentation network to align the structured prediction of the source and target images based on the similar spatial structure they share. To validate the performance of our method, we conduct comprehensive experiments on the “GTA5 to Cityscapes” dataset which is a standard domain adaptation benchmark for semantic segmentation. The experimental results clearly demonstrate that our method can effectively bridge the synthetic and real image domains and obtain better adaptation performance compared with the existing state-of-the-art methods.

Keywords

Unsupervised domain adaptation Semantic segmentation Deep learning Transfer learning 

References

  1. 1.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  2. 2.
    Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Wang, Y.C.F., Sun, M.: No more discrimination: cross city adaptation of road scene segmenters. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2011–2020. IEEE (2017)Google Scholar
  3. 3.
    Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)Google Scholar
  4. 4.
    Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)
  5. 5.
    Haeusser, P., Frerix, T., Mordvintsev, A., Cremers, D.: Associative domain adaptation. In: International Conference on Computer Vision (ICCV), vol. 2, p. 6 (2017)Google Scholar
  6. 6.
    Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)
  7. 7.
    Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the wild: pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)
  8. 8.
    Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)Google Scholar
  9. 9.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  10. 10.
    Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. arXiv preprint arXiv:1605.06636 (2016)
  11. 11.
    Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. arXiv preprint arXiv:1712.00479 (2017)
  12. 12.
    Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. arXiv preprint arXiv:1712.02560 3 (2017)
  13. 13.
    Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S.N., Chellappa, R.: Unsupervised domain adaptation for semantic segmentation with GANs. arXiv preprint arXiv:1711.06969 (2017)
  14. 14.
    Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. arXiv preprint arXiv:1802.10349 (2018)
  15. 15.
    Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)
  16. 16.
    Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.: Central moment discrepancy (CMD) for domain-invariant representation learning. arXiv preprint arXiv:1702.08811 (2017)
  17. 17.
    Zhang, Y., Qiu, Z., Yao, T., Liu, D., Mei, T.: Fully convolutional adaptation networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6810–6818 (2018)Google Scholar
  18. 18.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fengmao Lv
    • 1
    Email author
  • Qing Lian
    • 1
  • Guowu Yang
    • 1
  • Guosheng Lin
    • 2
  • Sinno Jialin Pan
    • 2
  • Lixin Duan
    • 1
  1. 1.Big Data Research CenterUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations