Advertisement

WAEF: Weighted Aggregation with Enhancement Filter for Visual Object Tracking

  • Litu Rout
  • Deepak Mishra
  • Rama Krishna Sai Subrahmanyam GorthiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11129)

Abstract

In the recent years, convolutional neural networks (CNN) have been extensively employed in various complex computer vision tasks including visual object tracking. In this paper, we study the efficacy of temporal regression with Tikhonov regularization in generic object tracking. Among other major aspects, we propose a different approach to regress in the temporal domain, based on weighted aggregation of distinctive visual features and feature prioritization with entropy estimation in a recursive fashion. We provide a statistics based ensembler approach for integrating the conventionally driven spatial regression results (such as from ECO), and the proposed temporal regression results to accomplish better tracking. Further, we exploit the obligatory dependency of deep architectures on provided visual information, and present an image enhancement filter that helps to boost the performance on popular benchmarks. Our extensive experimentation shows that the proposed weighted aggregation with enhancement filter (WAEF) tracker outperforms the baseline (ECO) in almost all the challenging categories on OTB50 dataset with a cumulative gain of 14.8%. As per the VOT2016 evaluation, the proposed framework offers substantial improvement of 19.04% in occlusion, 27.66% in illumination change, 33.33% in empty, 10% in size change, and 5.28% in average expected overlap.

Keywords

Enhancement filter Temporal regression Weighted aggregation Feature prioritization Tikhonov regularization Ensembler 

Supplementary material

478770_1_En_4_MOESM1_ESM.avi (10.8 mb)
Supplementary material 1 (avi 11067 KB)
478770_1_En_4_MOESM2_ESM.avi (12 mb)
Supplementary material 2 (avi 12261 KB)
478770_1_En_4_MOESM3_ESM.pdf (3.2 mb)
Supplementary material 3 (pdf 3324 KB)

References

  1. 1.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  2. 2.
    Cui, Z., Xiao, S., Feng, J., Yan, S.: Recurrently target-attending tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1449–1458 (2016)Google Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  4. 4.
    Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for tracking. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 21–26 (2017)Google Scholar
  5. 5.
    Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, Nottingham, 1–5 September 2014. BMVA Press (2014)Google Scholar
  6. 6.
    Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 58–66 (2015)Google Scholar
  7. 7.
    Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4310–4318 (2015)Google Scholar
  8. 8.
    Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46454-1_29CrossRefGoogle Scholar
  9. 9.
    Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1097 (2014)Google Scholar
  10. 10.
    Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1177–1184. IEEE (2011)Google Scholar
  11. 11.
    Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: a benchmark for higher frame rate object tracking. arXiv preprint arXiv:1703.05884 (2017)
  12. 12.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  13. 13.
    Gundogdu, E., Alatan, A.A.: Good features to correlate for visual tracking. IEEE Trans. Image Process. 27(5), 2526–2540 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)CrossRefGoogle Scholar
  15. 15.
    Kristan, M., et al.: A novel performance evaluation methodology for single-target trackers. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2137–2155 (2016).  https://doi.org/10.1109/TPAMI.2016.2516982CrossRefGoogle Scholar
  16. 16.
    Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1195–1202. IEEE (2011)Google Scholar
  17. 17.
    Liu, T., Wang, G., Yang, Q.: Real-time part-based visual tracking via adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4902–4912 (2015)Google Scholar
  18. 18.
    Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082 (2015)Google Scholar
  19. 19.
    Martinez, B., Valstar, M.F., Binefa, X., Pantic, M.: Local evidence aggregation for regression-based facial point detection. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1149–1163 (2013)CrossRefGoogle Scholar
  20. 20.
    Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)CrossRefGoogle Scholar
  21. 21.
    Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_27CrossRefGoogle Scholar
  22. 22.
    Nam, H., Baek, M., Han, B.: Modeling and propagating CNNs in a tree structure for visual tracking. arXiv preprint arXiv:1608.07242 (2016)
  23. 23.
    Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)Google Scholar
  24. 24.
    Ning, G., et al.: Spatially supervised recurrent convolutional neural networks for visual object tracking. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017)Google Scholar
  25. 25.
    Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-47969-4_44CrossRefGoogle Scholar
  26. 26.
    Petrou, M., Petrou, C.: Image Enhancement, Chap. 4. Wiley, New York (2010)Google Scholar
  27. 27.
    Rout, L., Manyam, G.R., Mishra, D., et al.: Rotation adaptive visual object tracking with motion consistency. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1047–1055, March 2018.  https://doi.org/10.1109/WACV.2018.00120
  28. 28.
    Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1420–1429 (2016)Google Scholar
  29. 29.
    Teng, Z., Xing, J., Wang, Q., Lang, C., Feng, S., Jin, Y.: Robust object tracking based on temporal and spatial deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1144–1153 (2017)Google Scholar
  30. 30.
    Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.S.: End-to-end representation learning for correlation filter based tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017Google Scholar
  31. 31.
    Wang, X., Valstar, M., Martinez, B., Haris Khan, M., Pridmore, T.: TRIC-track: tracking by regression with incrementally learned cascades. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4337–4345 (2015)Google Scholar
  32. 32.
    Wen, L., Cai, Z., Lei, Z., Yi, D., Li, S.Z.: Robust online learned spatio-temporal context model for visual tracking. IEEE Trans. Image Process. 23(2), 785–796 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)Google Scholar
  34. 34.
    Zhou, H., Yuan, Y., Shi, C.: Object tracking using sift features and mean shift. Comput. Vis. Image Underst. 113(3), 345–352 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Litu Rout
    • 1
  • Deepak Mishra
    • 1
  • Rama Krishna Sai Subrahmanyam Gorthi
    • 2
    Email author
  1. 1.Department of AvionicsIndian Institute of Space Science and TechnologyThiruvananthapuramIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology TirupatiTirupatiIndia

Personalised recommendations