Advertisement

A Summary of the 4th International Workshop on Recovering 6D Object Pose

  • Tomáš HodaňEmail author
  • Rigas Kouskouridas
  • Tae-Kyun Kim
  • Federico Tombari
  • Kostas Bekris
  • Bertram Drost
  • Thibault Groueix
  • Krzysztof Walas
  • Vincent Lepetit
  • Ales Leonardis
  • Carsten Steger
  • Frank Michel
  • Caner Sahin
  • Carsten Rother
  • Jiří Matas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11129)

Abstract

This document summarizes the 4th International Workshop on Recovering 6D Object Pose which was organized in conjunction with ECCV 2018 in Munich. The workshop featured four invited talks, oral and poster presentations of accepted workshop papers, and an introduction of the BOP benchmark for 6D object pose estimation. The workshop was attended by 100+ people working on relevant topics in both academia and industry who shared up-to-date advances and discussed open problems.

References

  1. 1.
    1st International Workshop on Recovering 6D Object Pose, ICCV 2015, Santiago. https://labicvl.github.io/3DPose-2015.html
  2. 2.
    2nd International Workshop on Recovering 6D Object Pose, ECCV 2016, Amsterdam. https://labicvl.github.io/R6D
  3. 3.
    3rd International Workshop on Recovering 6D Object Pose, ICCV 2017, Venice. http://cmp.felk.cvut.cz/sixd/workshop_2017/
  4. 4.
    4th International Workshop on Recovering 6D Object Pose, ECCV 2018, Munich. http://cmp.felk.cvut.cz/sixd/workshop_2018/
  5. 5.
  6. 6.
    Besl, P.J., McKay, N.D.: Method for registration of 3D shapes. In: International Society for Optics and Photonics (1992)Google Scholar
  7. 7.
    Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: dataset and evaluation for 3D mesh registration. In: CVPR (2014)Google Scholar
  8. 8.
    Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10605-2_35CrossRefGoogle Scholar
  9. 9.
    Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., Rother, C.: Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image. In: CVPR (2016)Google Scholar
  10. 10.
    Buch, A.G., Petersen, H.G., Krüger, N.: Local shape feature fusion for improved matching, pose estimation and 3D object recognition. SpringerPlus 5, 297 (2016)CrossRefGoogle Scholar
  11. 11.
    Buch, A.G., Kiforenko, L., Kraft, D.: Rotational subgroup voting and pose clustering for robust 3D object recognition. In: ICCV (2017)Google Scholar
  12. 12.
    Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: CVPR (2016)Google Scholar
  13. 13.
    Chen, X., et al.: 3D object proposals for accurate object class detection. In: Advances in Neural Information Processing Systems. pp. 424–432 (2015)Google Scholar
  14. 14.
    Correll, N., et al.: Analysis and observations from the first Amazon picking challenge. IEEE Trans. Autom. Sci. Eng. (T-ASE) 15, 172–188 (2016)CrossRefGoogle Scholar
  15. 15.
    Do, T.T., Cai, M., Pham, T., Reid, I.: Deep-6Dpose: recovering 6D object pose from a single RGB image. arXiv preprint arXiv:1802.10367 (2018)
  16. 16.
    Doumanoglou, A., Kouskouridas, R., Malassiotis, S., Kim, T.K.: Recovering 6D object pose and predicting next-best-view in the crowd. In: CVPR (2016)Google Scholar
  17. 17.
    Drost, B., Ulrich, M., Bergmann, P., Härtinger, P., Steger, C.: Introducing MVTec ITODD - a dataset for 3D object recognition in industry. In: CVPR (2017)Google Scholar
  18. 18.
    Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: CVPR (2010)Google Scholar
  19. 19.
    Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3D-CODED: 3D correspondences by deep deformation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 235–251. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01216-8_15CrossRefGoogle Scholar
  20. 20.
    Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: AtlasNet: a Papier-Mache approach to learning 3D surface generation. arXiv preprint arXiv:1802.05384 (2018)
  21. 21.
    Hernandez, C., et al.: Team Delft’s robot winner of the Amazon picking challenge 2016. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 613–624. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_51CrossRefGoogle Scholar
  22. 22.
    Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37331-2_42CrossRefGoogle Scholar
  23. 23.
    Hodaň, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. In: WACV (2017)Google Scholar
  24. 24.
    Hodaň, T., Matas, J., Obdržálek, Š.: On evaluation of 6D object pose estimation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 606–619. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49409-8_52CrossRefGoogle Scholar
  25. 25.
    Hodaň, T., et al.: BOP: benchmark for 6D object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 19–35. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01249-6_2CrossRefGoogle Scholar
  26. 26.
    Hodaň, T., Zabulis, X., Lourakis, M., Obdržálek, Š., Matas, J.: Detection and fine 3D pose estimation of texture-less objects in RGB-D images. In: IROS (2015)Google Scholar
  27. 27.
    Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making RGB-based 3D detection and 6D pose estimation great again. In: ICCV (2017)Google Scholar
  28. 28.
    Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 205–220. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46487-9_13CrossRefGoogle Scholar
  29. 29.
    Khoury, M., Zhou, Q.Y., Koltun, V.: Learning compact geometric features. In: ICCV (2017)Google Scholar
  30. 30.
    Manhardt, F., Kehl, W., Navab, N., Tombari, F.: Deep model-based 6D pose refinement in RGB. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 833–849. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01264-9_49CrossRefGoogle Scholar
  31. 31.
    Mellado, N., Aiger, D., Mitra, N.J.: Super4PCS fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33, pp. 205–215. Wiley Online Library (2014)Google Scholar
  32. 32.
    Mitash, C., Boularias, A., Bekris, K.E.: Robust 6D object pose estimation with stochastic congruent sets. In: British Machine Vision Conference (BMVC) (2018)Google Scholar
  33. 33.
    Mitash, C., Bekris, K.E., Boularias, A.: A self-supervised learning system for object detection using physics simulation and multi-view pose estimation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 545–551. IEEE (2017)Google Scholar
  34. 34.
    Mitash, C., Boularias, A., Bekris, K.E.: Improving 6D pose estimation of objects in clutter via physics-aware Monte Carlo tree search. In: IEEE International Conference on Robotics and Automation (ICRA) (2018)Google Scholar
  35. 35.
    Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)Google Scholar
  36. 36.
    Rad, M., Lepetit, V.: BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: ICCV (2017)Google Scholar
  37. 37.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  38. 38.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  39. 39.
    Rennie, C., Shome, R., Bekris, K.E., De Souza, A.F.: A dataset for improved RGBD-based object detection and pose estimation for warehouse pick-and-place. Robot. Autom. Lett. 1, 1179–1185 (2016)CrossRefGoogle Scholar
  40. 40.
    Rethage, D., Wald, J., Sturm, J., Navab, N., Tombari, F.: Fully-convolutional point networks for large-scale point clouds. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 625–640. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01225-0_37CrossRefGoogle Scholar
  41. 41.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA (2009)Google Scholar
  42. 42.
    Tan, D.J., Navab, N., Tombari, F.: Looking beyond the simple scenarios: combining learners and optimizers in 3D temporal tracking. IEEE Trans. Vis. Comput. Graph. 1, 1 (2017)Google Scholar
  43. 43.
    Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular slam with learned depth prediction. In: CVPR (2017)Google Scholar
  44. 44.
    Tejani, A., Tang, D., Kouskouridas, R., Kim, T.-K.: Latent-class hough forests for 3D object detection and pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 462–477. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10599-4_30CrossRefGoogle Scholar
  45. 45.
    Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In: CVPR (2018)Google Scholar
  46. 46.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15558-1_26CrossRefGoogle Scholar
  47. 47.
    Vidal, J., Lin, C.Y., Martí, R.: 6D pose estimation using an improved method based on point pair features. In: ICCAR (2018)Google Scholar
  48. 48.
    Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)
  49. 49.
    Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: RSS (2018)Google Scholar
  50. 50.
    Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. arXiv preprint arXiv:1801.07829 (2018)
  51. 51.
    Zeng, A., et al.: Multi-view self-supervised deep learning for 6D pose estimation in the Amazon picking challenge. In: IEEE International Conference on Robotics and Automation (ICRA) (2017)Google Scholar
  52. 52.
    Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: CVPR (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tomáš Hodaň
    • 1
    Email author
  • Rigas Kouskouridas
    • 2
  • Tae-Kyun Kim
    • 3
  • Federico Tombari
    • 4
  • Kostas Bekris
    • 5
  • Bertram Drost
    • 6
  • Thibault Groueix
    • 7
  • Krzysztof Walas
    • 8
  • Vincent Lepetit
    • 9
  • Ales Leonardis
    • 10
  • Carsten Steger
    • 6
  • Frank Michel
    • 11
  • Caner Sahin
    • 3
  • Carsten Rother
    • 12
  • Jiří Matas
    • 1
  1. 1.CTU in PraguePragueCzech Republic
  2. 2.Scape TechnologiesLondonEngland
  3. 3.Imperial College LondonLondonEngland
  4. 4.TU MunichMunichGermany
  5. 5.Rutgers UniversityNew BrunswickUSA
  6. 6.MVTecMunichGermany
  7. 7.Ecole Nationale des Ponts et ChausséesMarne-la-ValléeFrance
  8. 8.Poznan University of TechnologyPoznańPoland
  9. 9.University of BordeauxBordeauxFrance
  10. 10.University of BirminghamBirminghamUK
  11. 11.TU DresdenDresdenGermany
  12. 12.Heidelberg UniversityHeidelbergGermany

Personalised recommendations