Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings
Abstract
- (1)
An algorithm that can remove multiple sources of variation from the feature representation of a network. We demonstrate that this algorithm can be used to remove biases from the feature representation, and thereby improve classification accuracies, when training networks on extremely biased datasets.
- (2)
An ancestral origin database of 14,000 images of individuals from East Asia, the Indian subcontinent, sub-Saharan Africa, and Western Europe. We demonstrate on this dataset, for a number of facial attribute classification tasks, that we are able to remove racial biases from the network feature representation.
Keywords
Dataset bias Face attribute classification Ancestral origin datasetNotes
Acknowledgments
This research was financially supported by the EPSRC programme grant Seebibyte EP/M013774/1, the EPSRC EP/G036861/1, and the MRC Grant MR/M014568/1.
References
- 1.He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition, ArXiv e-prints, December 2015Google Scholar
- 2.Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
- 3.Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv e-prints, September 2014Google Scholar
- 4.Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A Deeper Look at Dataset Bias. ArXiv e-prints, May 2015Google Scholar
- 5.Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)Google Scholar
- 6.Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: A dataset for recognising faces across pose and age, p. 8Google Scholar
- 7.Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: Ms-celeb-1m: Challenge of recognizing one million celebrities in the real world, February 2016Google Scholar
- 8.Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts, Amherst, October 2007Google Scholar
- 9.Kemelmacher, I., Seitz, S., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale, December 2015Google Scholar
- 10.Kostinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization, pp. 2144–2151. IEEE, November 2011Google Scholar
- 11.Parkhi, O., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC, vol. 1, no. 3, p. 6, September 2015Google Scholar
- 12.Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. ArXiv e-prints, November 2013Google Scholar
- 13.Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning Transferable Features with Deep Adaptation Networks. ArXiv e-prints, February 2015Google Scholar
- 14.Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks, pp. 1717–1724. IEEE, June 2014Google Scholar
- 15.Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Friedler, S.A., Wilson, C. (eds.) Proceedings of the 1st Conference on Fairness, Accountability and Transparency. Proceedings of Machine Learning Research, PMLR, New York, NY, USA, 23–24 Feb 2018, vol. 81, pp. 77–91 (2018)Google Scholar
- 16.Ras, G., van Gerven, M., Haselager, P.: Explanation Methods in Deep Learning: Users, Values. Concerns and Challenges, ArXiv e-prints, March 2018Google Scholar
- 17.Sweeney, L.: Discrimination in Online Ad Delivery. ArXiv e-prints, January 2013CrossRefGoogle Scholar
- 18.Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Men also like shopping: reducing gender bias amplification using corpus-level constraints. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, pp. 2979–2989. Association for Computational Linguistics, September 2017Google Scholar
- 19.Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4068–4076. IEEE (2015)Google Scholar
- 20.Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schlkopf, B.: Covariate shift and local learning by distribution matching. In: Dataset Shift in Machine Learning. Biologische Kybernetik, Cambridge, MA, USA, pp. 131–160 (2009)CrossRefGoogle Scholar
- 21.Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial Discriminative Domain Adaptation. ArXiv e-prints, February 2017Google Scholar
- 22.Yin, X., Liu, X.: Multi-task convolutional neural network for pose-invariant face recognition. IEEE Trans. Image Process. 27(2), 964–975 (2018)MathSciNetCrossRefGoogle Scholar
- 23.Jia, S., Lansdall-Welfare, T., Cristianini, N.: Right for the Right Reason: Training Agnostic Networks. ArXiv e-prints, June 2018CrossRefGoogle Scholar
- 24.Raff, E., Sylvester, J.: Gradient Reversal Against Discrimination. ArXiv e-prints, July 2018Google Scholar
- 25.Ganin, Y., et al.: Domain-adversarial training of neural networks. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 189–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_10CrossRefGoogle Scholar
- 26.Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, vol. 1, pp. 886–893. IEEE Computer Society (2005)Google Scholar
- 27.Rothe, R., Timofte, R., Gool, L.V.: DEX: Deep EXpectation of apparent age from a single image, pp. 252–257. IEEE, December 2015Google Scholar
- 28.Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Association, pp. 6:1–6:12 (2014)Google Scholar
- 29.Vedaldi, A., Lenc, K.: Matconvnet - convolutional neural networks for matlab. In: Proceedings of the ACM International Conference on Multimedia (2015)Google Scholar