Exploring Bias in Primate Face Detection and Recognition

  • Sanchit Sinha
  • Mohit Agarwal
  • Mayank Vatsa
  • Richa SinghEmail author
  • Saket Anand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11129)


Deforestation and loss of habitat have resulted in rapid decline of certain species of primates in forests. On the other hand, uncontrolled growth of a few species of primates in urban areas has led to safety issues and nuisance for the local residents. Hence, identifying individual primates has become the need of the hour - not only for conservation and effective mitigation in the wild but also in zoological parks and wildlife sanctuaries. Primates and human faces share a lot of common features like position and shape of eyes, nose and mouth. It is worth exploring whether the knowledge of human faces and recent methods learned from human face detection and recognition can be extended to primate faces. However, similar challenges relating to bias in human faces will also occur in primates. The quality and orientation of primate images along with different species of primates - ranging from monkeys to gorillas and chimpanzees will contribute to bias in effective detection and recognition. Experimental results on a primate dataset of over 80 identities show the effect of bias in this research problem.


Animal biometrics Deep learning Biometrics Bias Face detection Face recognition 



Vatsa, Singh, and Anand are partially supported through Infosys Center for AI at IIIT-Delhi. The authors acknowledge Wildlife Institute of India for sharing the database.


  1. 1.
    The IUCN red list of threatened species. version 2017–3. Accessed 02 Jan 2018
  2. 2.
    Awad, A.I.: From classical methods to animal biometrics: a review on cattle identification and tracking. Comput. Electron. Agric. 123, 423–435 (2016)CrossRefGoogle Scholar
  3. 3.
    Clark, P.E., et al.: An advanced, low-cost, GPS-based animal tracking system. Rangel. Ecol. Manag. 59(3), 334–340 (2006)CrossRefGoogle Scholar
  4. 4.
    Crouse, D., et al.: Lemurfaceid: a face recognition system to facilitate individual identification of lemurs. BMC Zool. 2(1), 2 (2017)CrossRefGoogle Scholar
  5. 5.
    Crunchant, A.S., et al.: Automated face detection for occurrence and occupancy estimation in chimpanzees. Am. J. Primatol. 79(3), e22627 (2017)CrossRefGoogle Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 1, pp. 886–893 (2005)Google Scholar
  7. 7.
    Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14(8), 1724–1733 (1997)CrossRefGoogle Scholar
  8. 8.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Freytag, A., Rodner, E., Simon, M., Loos, A., Kühl, H.S., Denzler, J.: Chimpanzee faces in the wild: log-euclidean CNNs for predicting identities and attributes of primates. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 51–63. Springer, Cham (2016). Scholar
  10. 10.
    Hu, P., Ramanan, D.: Finding tiny faces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1522–1530 (2017)Google Scholar
  11. 11.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts, Amherst, October 2007Google Scholar
  12. 12.
    Joshi, A., VishnuKanth, I.N., Samdaria, N., Bagla, S., Ranjan, P.: GPS-less animal tracking system. In: Fourth IEEE Conference on Wireless Communication and Sensor Networks, pp. 120–125 (2008)Google Scholar
  13. 13.
    Kim, S.H., Kim, D.H., Park, H.D.: Animal situation tracking service using RFID, GPS, and sensors. In: Second International Conference on Computer and Network Technology, pp. 153–156. IEEE (2010)Google Scholar
  14. 14.
    Lahiri, M., Tantipathananandh, C., Warungu, R., Rubenstein, D.I., Berger-Wolf, T.Y.: Biometric animal databases from field photographs: identification of individual zebra in the wild. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, p. 6 (2011)Google Scholar
  15. 15.
    Loos, A., Ernst, A.: An automated chimpanzee identification system using face detection and recognition. EURASIP J. Image Video Process. (1), 49 (2013)Google Scholar
  16. 16.
    Loos, A., Pfitzer, M., Aporius, L.: Identification of great apes using face recognition. In: 19th European Signal Processing Conference, pp. 922–926. IEEE (2011)Google Scholar
  17. 17.
    Marciniak, T., Chmielewska, A., Weychan, R., Parzych, M., Dabrowski, A.: Influence of low resolution of images on reliability of face detection and recognition. Multimedia Tools Appl. 74(12), 4329–4349 (2015)CrossRefGoogle Scholar
  18. 18.
    Mason, A.D., Michalakidis, G., Krause, P.J.: Tiger nation: empowering citizen scientists. In: 6th IEEE International Conference on Digital Ecosystems Technologies, pp. 1–5 (2012)Google Scholar
  19. 19.
    Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: British Machine Vision Conference, vol. 1, p. 6 (2015)Google Scholar
  20. 20.
    Phillips, P.J., Jiang, F., Narvekar, A., Ayyad, J., O’Toole, A.J.: An other-race effect for face recognition algorithms. ACM Trans. Appl. Percept. 8(2), 14 (2011)CrossRefGoogle Scholar
  21. 21.
    Shlens, J.: A tutorial on principal component analysis. Computer Research Repository (2014).
  22. 22.
    Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face recognition by humans: nineteen results all computer vision researchers should know about. Proc. IEEE 94(11), 1948–1962 (2006)CrossRefGoogle Scholar
  23. 23.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference Computer Vision and Pattern Recognition, vol. 1 (2001)Google Scholar
  24. 24.
    Witham, C.L.: Automated face recognition of rhesus macaques. J. Neurosci. Methods 300, 157–165 (2018)CrossRefGoogle Scholar
  25. 25.
    Xiao, R., Li, M.J., Zhang, H.J.: Robust multipose face detection in images. IEEE Trans. Circuits Syst. Video Technol. 14(1), 31–41 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yadav, D., Singh, R., Vatsa, M., Noore, A.: Recognizing age-separated face images: humans and machines. Public Libr. Sci. One 9(12), e112234 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanchit Sinha
    • 1
  • Mohit Agarwal
    • 1
  • Mayank Vatsa
    • 1
  • Richa Singh
    • 1
    Email author
  • Saket Anand
    • 1
  1. 1.IIIT-DelhiNew DelhiIndia

Personalised recommendations