Predicting Muscle Activity and Joint Angle from Skin Shape
Abstract
Muscle of human body can be a clue to recognize the behavior and intention of a person. If the muscle activity is measured only by visual observation, it is useful to estimate the state of the muscle. In this paper, a method of predicting muscle activity and joint angle of human body from skin shape is proposed. Since the muscle activity and the joint angle affect the skin shape, the both factors should be considered simultaneously. The proposed method is a learning-based approach that uses the data set of the skin shape, the muscle activity and the joint angle. It trains a linear regressor for predicting muscle activity and joint angle from skin shape. The deformation of skin shape is calculated as the feature in the active regions, which are extracted from the training data and limits the regions of the skin shape that contribute to the prediction. We acquired a lower limb with simple motion to consider the small number of factors in this paper. In the experiment, the muscle activity and joint angle are predicted even in the case that the both factors change simultaneously. The skin regions that contributes to prediction are given as the result of learning, and the distribution is reasonable from the viewpoint of biomechanics.
Keywords
Skin shape Muscle activity Joint angleSupplementary material
References
- 1.Delp, S., Loan, J.: A computational framework for simulating and analyzing human and animal movement. IEEE Comput. Sci. Eng. 2(5), 46–55 (2000)CrossRefGoogle Scholar
- 2.Nakamura, Y., Yamane, K., Fujita, Y., Suzuki, I.: Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. IEEE Trans. Robot. 21(1), 58–66 (2005)CrossRefGoogle Scholar
- 3.Luh, J., Walker, M., Paul, R.: On-line computational scheme for mechanical manipulators. ASME J. Dyn. Syst. Meas. Contr. 102(2), 69–76 (1980)MathSciNetCrossRefGoogle Scholar
- 4.Gamage, S., Lasenby, J.: New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech. 35(1), 87–93 (2002)CrossRefGoogle Scholar
- 5.Venture, G., Ayusawa, K., Nakamura, Y.: Optimal estimation of human body segments dynamics using realtime visual feedback. In: Proceedings of the IEEE/International Conference on Intelligent Robot System, pp. 1627–1632 (2009)Google Scholar
- 6.Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max criterion - a comparative numerical study. J. Biomech. 34(3), 409–415 (2001)CrossRefGoogle Scholar
- 7.Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. 126, 136–195 (1938)CrossRefGoogle Scholar
- 8.Stroeve, S.: Impedance characteristics of a neuro-musculoskeletal model of the human arm I: posture control. J. Biol. Cybern. 81, 475–494 (1999)CrossRefGoogle Scholar
- 9.Yamane, K., Fujita, Y., Nakamura, Y.: Estimation of physically and physiologically valid somatosensory information. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2624–2630 (2005)Google Scholar
- 10.Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)Google Scholar
- 11.Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23CrossRefGoogle Scholar
- 12.Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_41CrossRefGoogle Scholar
- 13.Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34CrossRefGoogle Scholar
- 14.Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1446–1455 (2015)Google Scholar
- 15.Zhou, X., Sun, X., Zhang, W., Liang, S., Wei, Y.: Deep kinematic pose regression. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 186–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_17CrossRefGoogle Scholar
- 16.Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Computer Vision and Pattern Recognition (CVPR) (2018)Google Scholar
- 17.Lee, D., Glueck, M., Khan, A., Fiume, E., Jackson, K.: Modeling and simulation of skeletal muscle for computer graphics: a survey. Found. Trends Comput. Graph. Vis. 7(4), 229–276 (2012)CrossRefGoogle Scholar
- 18.Robertini, N., Neumann, T., Varanasi, K., Theobalt, C.: Capture of arm-muscle deformations using a depth-camera. In: Proceedings of European Conference on Visual Media Production (CVMP), vol. 10 (2013)Google Scholar
- 19.Park, S., Hodgins, J.: Data-driven modeling of skin and muscle deformation. In: ACM TOG (2008)Google Scholar
- 20.Lewis, J., Anjyo, K., Rhee, T., Zhang, M., Pighin, F., Deng, Z.: Practice and theory of blendshape facial models. In: Proceedings of Eurographics 2014 - State the Art Reports (2014)Google Scholar
- 21.Sueda, S., Pai, D.K.: Dynamic simulation of the hand. In: Balasubramanian, R., Santos, V.J. (eds.) The Human Hand as an Inspiration for Robot Hand Development. STAR, vol. 95, pp. 267–288. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03017-3_13CrossRefGoogle Scholar
- 22.Tsoli, A., Mahmood, N., Black, M.: Breathing life into shape: capturing, modeling and animating 3D human breathing. ACM Trans. Graph. 33(4), 52 (2014)CrossRefGoogle Scholar
- 23.Lee, S.H., Sifakis, E., Terzopoulos, D.: Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28(4), 99 (2009)CrossRefGoogle Scholar
- 24.Sagawa, R., Yoshiyasu, Y., Alspach, A., Ayusawa, K., Yamane, K., Hilton, A.: Analyzing muscle activity and force with skin shape captured by non-contact visual sensor. In: Bräunl, T., McCane, B., Rivera, M., Yu, X. (eds.) PSIVT 2015. LNCS, vol. 9431, pp. 488–501. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29451-3_39CrossRefGoogle Scholar
- 25.Weise, T., Li, H., Van Gool, L., Pauly, M.: Face/off: live facial puppetry. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7–16 (2009)Google Scholar
- 26.Yeh, I.C., Lin, C.H., Sorkine, O., Lee, T.Y.: Template-based 3D model fitting using dual-domain relaxation. IEEE Trans. Visual. Comput. Graph. 17(8), 1178–1190 (2010)Google Scholar
- 27.Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)CrossRefGoogle Scholar
- 28.Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR (2007)Google Scholar
- 29.Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. In: Proceedings of the Symposium on Geometry Processing, pp. 1421–1430 (2008)CrossRefGoogle Scholar
- 30.Huang, Q.X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. In: Proceedings of the Symposium on Geometry Processing, pp. 1449–1457 (2008)CrossRefGoogle Scholar
- 31.Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.P.: Isometric registration of ambiguous and partial data. In: CVPR, pp. 1185–1192 (2009)Google Scholar
- 32.Liao, M., Zhang, Q., Wang, H., Yang, R., Gong, M.: Modeling deformable objects from a single depth camera. In: ICCV, pp. 167–174 (2009)Google Scholar
- 33.Papazov, C., Burschka, D.: Deformable 3D shape registration based on local similarity transforms. Comput. Graph. Forum 30, 1493–1502 (2011)CrossRefGoogle Scholar
- 34.Yoshiyasu, Y., Ma, W.C., Yoshida, E., Kanehiro, F.: As-conformal-as-possible surface registration. Comput. Graph. Forum 33(5), 257–267 (2014)CrossRefGoogle Scholar
- 35.Sagawa, R., Sakashita, K., Kasuya, N., Kawasaki, H., Furukawa, R., Yagi, Y.: Grid-based active stereo with single-colored wave pattern for dense one-shot 3D scan. In: 3DIMPVT, pp. 363–370 (2012)Google Scholar
- 36.Sagawa, R., Satoh, Y.: Illuminant-camera communication to observe moving objects under strong external light by spread spectrum modulation. In: Proceedings of CVPR (2017)Google Scholar
- 37.Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. SGP 2006, pp. 61–70 (2006)Google Scholar
- 38.Merletti, R.: Standards for reporting EMG data. J. Electromyogr. Kinesiol. 9(1), III–IV (1999)Google Scholar
- 39.Stroeve, S.: Impedance characteristic of a neuromusculoskeletal model of the human arm I. Posture control. Biol. Cybern. 81(5), 475–494 (1999)CrossRefGoogle Scholar
- 40.Johansson, T., Meier, P., Blickhan, R.: A finite-element model for mechanical analysis of skeletal muscles. J. Theor. Biol. 206(1), 131–149 (2000)CrossRefGoogle Scholar