Advertisement

Discussion on Advanced Targeted Nanomedical Application Scenarios for Treatment of Some Chronic Diseases

  • Uche Chude-Okonkwo
  • Reza MalekianEmail author
  • B. T. Maharaj
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

In this chapter, classical discussions on the possible application of the ATN solution to the treatment of some chronic diseases are provided. The diseases discussed include cancer, Alzheimer’s disease, acquired immunodeficiency syndrome (AIDS) and cardiovascular diseases. For each disease, discussion trails the pathophysiology and pathways of its occurrence.

References

  1. 1.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516CrossRefGoogle Scholar
  2. 2.
    Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180CrossRefGoogle Scholar
  3. 3.
    Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036Google Scholar
  4. 4.
    Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118CrossRefGoogle Scholar
  5. 5.
    Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811CrossRefGoogle Scholar
  6. 6.
    Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3(11):697–707CrossRefGoogle Scholar
  7. 7.
    Martinez-Caballero S, Dejean LM, Kinnally MS, Oh KJ, Mannella CA, Kinnally KW (2009) Assembly of the mitochondrial apoptosis-induced channel, MAC. J Biol Chem 284(18):12235–12245CrossRefGoogle Scholar
  8. 8.
    Twiddy D, Brown DG, Adrain C, Jukes R, Martin SJ, Cohen GM, MacFarlane M, Cain K (2004) Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. J Biol Chem 279(19):19665–19682CrossRefGoogle Scholar
  9. 9.
    Murali AK, Mehrotra S (2011) Apoptosis: an ubiquitous T cell immunomodulator. J Clin Cell Immunol S3:2–12Google Scholar
  10. 10.
    Chude-Okonkwo UA, Malekian R, Maharaj BT, Chude CC (2015) Bio-inspired approach for eliminating redundant nanodevices in Internet of Bio-Nano Things. In: IEEE Globecom workshops (GC Wkshps), Dec 6, pp 1–6Google Scholar
  11. 11.
    Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2002):153–164CrossRefGoogle Scholar
  12. 12.
    Schmitt CA, Fridman JS, Yang M, Baranow E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1(2002):289–291CrossRefGoogle Scholar
  13. 13.
    Von Manstein V, Min Yang C, Richter D, Delis N, Vafaizadeh V, Groner B (2013) Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther 8(3):193–202CrossRefGoogle Scholar
  14. 14.
    Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Principles Pract 14(Suppl. 1):35–48CrossRefGoogle Scholar
  15. 15.
    Fernando J, Jones R (2015) The principles of cancer treatment by chemotherapy. Surgery (Oxford) 33(3):131–135CrossRefGoogle Scholar
  16. 16.
    Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA (2014) Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther 5(8):817–822CrossRefGoogle Scholar
  17. 17.
    Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199CrossRefGoogle Scholar
  18. 18.
    Thomas J, Beinhorn C, Norton D, Richardson M, Sumler SS, Frenkel M (2010) Managing radiation therapy side effects with complementary medicine. J Soc Integr Oncol 8(2):65–80Google Scholar
  19. 19.
    Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy–revisited. Nat Rev Drug Discovery 10(8):591–600CrossRefGoogle Scholar
  20. 20.
    Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P (2017) New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care 21(1):89–100CrossRefGoogle Scholar
  21. 21.
    Stokes Z, Chan S (2003) Principles of cancer treatment by hormone therapy. Surgery Oxford Int Ed 21(11):280–283CrossRefGoogle Scholar
  22. 22.
    Fairchild A, Tirumani SH, Rosenthal MH, Howard SA, Krajewski KM, Nishino M, Shinagare AB, Jagannathan JP, Ramaiya NH (2015) Hormonal therapy in oncology: a primer for the radiologist. Am J Roentgenol 204(6):W620–W630CrossRefGoogle Scholar
  23. 23.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  24. 24.
    Mehrgou A, Akouchekian M (2016) The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islamic Republic of Iran 30:369–381Google Scholar
  25. 25.
    Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M (2015) Alzheimer’s disease international. World Alzheimer report 2015: the global impact of Dementia: an analysis of prevalence, incidence, cost and trendGoogle Scholar
  26. 26.
    Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, Kaether C, Fändrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Proc Natl Acad Sci 107(5):1942–1947CrossRefGoogle Scholar
  27. 27.
    Lacosta AM, Insua D, Badi H, Pesini P, Sarasa M (2017) Neurofibrillary tangles of Aβ x-40 in Alzheimer’s disease brains. J Alzheimers Dis 58(3):661–667CrossRefGoogle Scholar
  28. 28.
    Gregori M, Masserini M, Mancini S (2015) Nanomedicine for the treatment of Alzheimer’s disease. Nanomedicine 10(7):1203–1218CrossRefGoogle Scholar
  29. 29.
    Hernando S, Gartziandia O, Herran E, Pedraz JL, Igartua M, Hernandez RM (2016) Advances in nanomedicine for the treatment of Alzheimer’s and Parkinson’s diseases. Nanomedicine 11(10):1267–1285CrossRefGoogle Scholar
  30. 30.
    Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci 102(7):2273–2276CrossRefGoogle Scholar
  31. 31.
    Fonseca-Santos B, Gremião MP, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomed 10:4981–5003CrossRefGoogle Scholar
  32. 32.
    Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Controlled Release 235:34–47CrossRefGoogle Scholar
  33. 33.
    Calles NR, Evans D, Terlonge D (2006) Pathophysiology of the human immunodeficiency virus. In: HIV Curriculum for the health professional. Baylor International Pediatric AIDS Initiative, Baylor College of Medicine, Houston, TX, pp 11–22Google Scholar
  34. 34.
    Richman DD (2000) Normal physiology and HIV pathophysiology of human T-cell dynamics. J Clin Investig 105(5):565–566CrossRefGoogle Scholar
  35. 35.
    Okoye AA, Picker LJ (2013) CD 4 + T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 254(1):54–64CrossRefGoogle Scholar
  36. 36.
    Coffin J, Swanstrom R (2013) HIV pathogenesis: dynamics and genetics of viral populations and infected cells. Cold Spring Harbor Perspect Med 3(1):a012526CrossRefGoogle Scholar
  37. 37.
    Becerra JC, Bildstein LS, Gach JS (2016) Recent insights into the HIV/AIDS pandemic. Microb Cell 3(9):451–475CrossRefGoogle Scholar
  38. 38.
    Tang H, Mao Y, Shi CX, Han J, Wang L, Xu J, Qin Q, Detels R, Wu Z (2014) Baseline CD4 cell counts of newly diagnosed HIV cases in China: 2006–2012. PLoS ONE 9(6):e96098CrossRefGoogle Scholar
  39. 39.
    Poveda E, Tabernilla A (2016) New insights into HIV-1 persistence in sanctuary sites during antiretroviral therapy. AIDS Rev 18(1):55–55Google Scholar
  40. 40.
    Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R (2015) Extremely high mutation rate of HIV-1 in vivo. PLoS Biol 13(9):e1002251CrossRefGoogle Scholar
  41. 41.
    Curley P, Liptrott NJ, Owen A (2017) Advances in nanomedicine drug delivery applications for HIV therapy. Future Sci OA 4(1):1–6Google Scholar
  42. 42.
    Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, Andrian UV, Farokhzad OC (2010) Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 5(2):269–285CrossRefGoogle Scholar
  43. 43.
    Kaushik A, Jayant RD, Nair M (2018) Nanomedicine for neuroHIV/AIDS management. Nanomedicine (London, England) 13(7):669–673CrossRefGoogle Scholar
  44. 44.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910CrossRefGoogle Scholar
  45. 45.
    Celermajer DS et al (2012) Cardiovascular disease in the developing world. J Am Coll Cardiol 60(14):1207–1216CrossRefGoogle Scholar
  46. 46.
    Kengne AP, Amoah AGB, Mbanya JC (2005) Cardiovascular complications of diabetes mellitus in sub-Saharan Africa. Circulation 112(23):3592–3601CrossRefGoogle Scholar
  47. 47.
    Saric M, Kronzon I (2012) Aortic atherosclerosis and embolic events. Curr Cardiol Rep 14(3):342–349CrossRefGoogle Scholar
  48. 48.
    Di Tullio MR, Homma S (2002) Mechanisms of cardioembolic stroke. Curr Cardiol Rep 4(2):141–148CrossRefGoogle Scholar
  49. 49.
    Maisch B, Pankuweit S, Karatolios K, Ristić AD (2006) Invasive techniques: from diagnosis to treatment. Rheumatology 45(4):iv32–iv38CrossRefGoogle Scholar
  50. 50.
    Slijkhuis W, Mali W, Appelman Y (2009) A historical perspective towards a non-invasive treatment for patients with atherosclerosis. Netherlands Heart J 17(4):140–144CrossRefGoogle Scholar
  51. 51.
    Ma TK, Kam KK, Yan BP, Lam YY (2010) Renin–angiotensin–aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 160(6):1273–1292CrossRefGoogle Scholar
  52. 52.
    Borer JS (2007) Angiotensin-converting enzyme inhibition: a landmark advance in treatment for cardiovascular diseases. Eur Heart J Suppl 9(suppl_E):E2–E9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uche Chude-Okonkwo
    • 1
  • Reza Malekian
    • 1
    Email author
  • B. T. Maharaj
    • 1
  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of PretoriaHatfield, PretoriaSouth Africa

Personalised recommendations