Internet of Things for Advanced Targeted Nanomedical Applications

  • Uche Chude-Okonkwo
  • Reza MalekianEmail author
  • B. T. Maharaj
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


The fundamental idea behind nanomedicine is to improve the efficiency of medical and healthcare systems using nanotechnology concepts, devices, tools, technologies and techniques. On the other hand, another nanotechnology offshoot, molecular communication engineering, considers the design and development of nano-scale devices and machines that can communicate by means of biochemical information exchange.


  1. 1.
    Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutorials 19(4):3046–3096CrossRefGoogle Scholar
  2. 2.
    Dressler F, Fischer S (2015) Connecting in-body nano communication with body area networks: challenges and opportunities of the Internet of nano things. Nano Commun Netw 6(2):29–38CrossRefGoogle Scholar
  3. 3.
    Atzori L, Iera A, Morabito G (2010) The Internet of things: a survey. Comput Netw 54(15):2787–2805CrossRefGoogle Scholar
  4. 4.
    Li S, Da Xu L, Zhao S (2015) The Internet of things: a survey. Inf Syst Front 17(2):243–259CrossRefGoogle Scholar
  5. 5.
    Miorandi D et al (2012) Internet of things: vision, applications and research challenges. Ad Hoc Netw 10:1497–1516CrossRefGoogle Scholar
  6. 6.
    Akyildiz IF, Jornet JM (2010) The Internet of nano-things. IEEE Wirel Commun 17(6):58–63CrossRefGoogle Scholar
  7. 7.
    Akyildiz IF, Pierobon M, Balasubramaniam S, Koucheryavy Y (2015) The Internet of bio-nano things. IEEE Commun Mag 53(3):32–40CrossRefGoogle Scholar
  8. 8.
    Chude-Okonkwo UA, Malekian R, Maharaj BT, Chude CC (2015) Bio-inspired approach for eliminating redundant nanodevices in Internet of Bio-Nano Things. In: IEEE Globecom Workshops (GC Wkshps), 6 Dec, pp 1–6Google Scholar
  9. 9.
    Chude-Okonkwo UA, Malekian R, Maharaj BT (2016) Biologically inspired bio-cyber interface architecture and model for Internet of bio-nanothings applications. IEEE Trans Commun 64(8):3444–3455CrossRefGoogle Scholar
  10. 10.
    Sethi P, Sarangi SR (2017) Internet of things: architectures, protocols, and applications. J Electr Comput Eng 2017:1–25CrossRefGoogle Scholar
  11. 11.
    Balasubramaniam S, Kangasharju J (2013) Realizing the Internet of nano things: challenges, solutions, and applications. Computer 46(2):62–68CrossRefGoogle Scholar
  12. 12.
    Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase: a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2(9):669–677CrossRefGoogle Scholar
  13. 13.
    Biedermann J, Ullrich A, Schöneberg J, Noé F (2015) ReaDDyMM: fast interacting particle reaction-diffusion simulations using graphical processing units. Biophys J 108(3):457–461CrossRefGoogle Scholar
  14. 14.
    Shamir M et al (2016) Snapshot: timescales in cell biology. Cell 164(6):1302CrossRefGoogle Scholar
  15. 15.
    Perkins JR et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18(10):1233–1243CrossRefGoogle Scholar
  16. 16.
    Sanders CR (2010) Biomolecular ligand-receptor binding studies: theory, practice, and analysis. Vanderbilt University, pp 1–42Google Scholar
  17. 17.
    Sundmaeker H, Guillemin P, Friess P, Woelfflé S (2010) Vision and challenges for realising the internet of things. Cluster Eur Res Projects Internet Things, Eur Commision 3(3):34–36Google Scholar
  18. 18.
    Chen S, Xu H, Liu D, Hu B, Wang H (2014) A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J 1(4):349–359CrossRefGoogle Scholar
  19. 19.
    Roberts JR, Park J, Helton K, Wisniewski N, McShane MJ (2012) Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics. J Diabetes Sci Technol 6(6):1267–1275CrossRefGoogle Scholar
  20. 20.
    Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP (2005) Towards advanced chemical and biological nanosensors: an overview. Talanta 67:438–448CrossRefGoogle Scholar
  21. 21.
    Nakano T, Kobayashi S, Suda T, Okaie Y, Hiraoka Y, Haraguchi T (2014) Externally controllable molecular communication. IEEE J Sel Areas Commun 32:2417–2431CrossRefGoogle Scholar
  22. 22.
    Kuscu M, Akan OB (2016) The Internet of molecular things based on FRET. IEEE Internet Things J 3:4–17CrossRefGoogle Scholar
  23. 23.
    Pottie GJ, Kaiser WJ (2000) Wireless integrated network sensors. Commun ACM 43(5):51–58CrossRefGoogle Scholar
  24. 24.
    Xu Y, Qi H (2004) Distributed computing paradigms for collaborative signal and information processing in sensor networks. J Parallel Distrib Comput 64(8):945–959CrossRefGoogle Scholar
  25. 25.
    Shih PJ, Lee CH, Yeh PC, Chen KC (2013) Channel codes for reliability enhancement in molecular communication. IEEE J Sel Areas Commun 31(12):857–867CrossRefGoogle Scholar
  26. 26.
    Lu Y, Higgins MD, Leeson MS (2015) Comparison of channel coding schemes for molecular communications systems. IEEE Trans Commun 63(11):3991–4001CrossRefGoogle Scholar
  27. 27.
    Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Sur Tutorials 17(4):2317–2346CrossRefGoogle Scholar
  28. 28.
    IEEE P1906.1—Recommended practice for nanoscale and molecular communication frameworkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uche Chude-Okonkwo
    • 1
  • Reza Malekian
    • 1
    Email author
  • B. T. Maharaj
    • 1
  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of PretoriaHatfield, PretoriaSouth Africa

Personalised recommendations