Understanding Delivery Routes and Operational Environments of Nanosystems

  • Uche Chude-Okonkwo
  • Reza MalekianEmail author
  • B. T. Maharaj
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


In a typical ATN solution, nanoparticles are delivered to targeted locations in the body where they are meant to operate. Unless the nanoparticles are delivered to the targeted location (nanonetwork site), no effective delivery of the ATN solution can take place. The journey of the ATN nanoparticles from the points of administration into the body system to the targeted location is a complex one and requires accurate understanding. Indeed, the delivery of the ideals and promises of nanomedicine in general, and ATN in particular, crucially depends on the know-how and accuracy of conveying nanoparticles to the desired destinations in the body.


  1. 1.
    Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618CrossRefGoogle Scholar
  2. 2.
    Yildirimer L, Thanh NT, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. Nano Today 6:585–607CrossRefGoogle Scholar
  3. 3.
    Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234CrossRefGoogle Scholar
  4. 4.
    Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–570CrossRefGoogle Scholar
  5. 5.
    Vong LB, Yoshitomi T, Matsui H, Nagasaki Y (2015) Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials 55:54–63CrossRefGoogle Scholar
  6. 6.
    Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y (2012) An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology 143:1027–1036CrossRefGoogle Scholar
  7. 7.
    Hua S, Marks E, Schneider JJ, Keely S (2015) Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed Nanotechnol Biol Med 11:1117–1132CrossRefGoogle Scholar
  8. 8.
    Tian Y, Mao S (2012) Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert Opin Drug Deliv 9:687–700CrossRefGoogle Scholar
  9. 9.
    Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243CrossRefGoogle Scholar
  10. 10.
    Bellmann S et al (2015) Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdisc Rev Nanomed Nanobiotechnol 7:609–622CrossRefGoogle Scholar
  11. 11.
    Fröhlich EE, Fröhlich E (2016) Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int J Mol Sci 17:509CrossRefGoogle Scholar
  12. 12.
    Lai SK, Wang YY, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171CrossRefGoogle Scholar
  13. 13.
    Yamanaka YJ, Leong KW (2008) Engineering strategies to enhance nanoparticle-mediated oral delivery. J Biomater Sci Polym Ed 19:1549–1570CrossRefGoogle Scholar
  14. 14.
    Tomita M, Shiga M, Hayashi M, Awazu S (1988) Enhancement of colonic drug absorption by the paracellular permeation route. Pharm Res 5:341–346CrossRefGoogle Scholar
  15. 15.
    Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233CrossRefGoogle Scholar
  16. 16.
    Axson JL et al (2015) Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C 119:20632–20641CrossRefGoogle Scholar
  17. 17.
    Damge C, Michel C, Aprahamian M, Couvreur P, Devissaguet J (1990) Nanocapsules as carriers for oral peptide delivery. J Controlled Release 13:233–239CrossRefGoogle Scholar
  18. 18.
    Yun Y, Cho YW, Park K (2013) Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 65:822–832CrossRefGoogle Scholar
  19. 19.
    Smola M, Vandamme T, Sokolowski A (2008) Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomed 3(1):1–19CrossRefGoogle Scholar
  20. 20.
    Goel A, Baboota S, Sahni JK, Ali J (2013) Exploring targeted pulmonary delivery for treatment of lung cancer. Int J Pharm Invest 3(1):8–14CrossRefGoogle Scholar
  21. 21.
    Mangal S, Gao W, Li T, Zhou QT (2017) Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 38(6):782–797CrossRefGoogle Scholar
  22. 22.
    Costa-Gouveia J et al (2017) Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep 7(5390):1–14Google Scholar
  23. 23.
    Miller MR et al (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11:4542–4552CrossRefGoogle Scholar
  24. 24.
    Thorley AJ, Ruenraroengsak P, Potter TE, Tetley TD (2014) Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS Nano 8:11778–11789CrossRefGoogle Scholar
  25. 25.
    Bakand S, Hayes A (2016) Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 17(6):1–17CrossRefGoogle Scholar
  26. 26.
    Siegmann K, Scherrer L, Siegmann H (1998) Physical and chemical properties of airborne nanoscale particles and how to measure the impact on human health. J Mol Struct (Thoechem) 458:191–201CrossRefGoogle Scholar
  27. 27.
    Fazlollahi F et al (2013) Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms. Nanomed Nanotechnol Biol Med 9:786–794CrossRefGoogle Scholar
  28. 28.
    Yacobi NR et al (2010) Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42:604–614CrossRefGoogle Scholar
  29. 29.
    Kuzmov A, Minko T (2015) Nanotechnology approaches for inhalation treatment of lung diseases. J Controlled Release 219:500–518CrossRefGoogle Scholar
  30. 30.
    Pujalté I, Dieme D, Haddad S, Serventi AM, Bouchard M (2017) Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol Lett 265:77–85CrossRefGoogle Scholar
  31. 31.
    Palmer BC, DeLouise LA (2016) Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 21(12):1–17CrossRefGoogle Scholar
  32. 32.
    Wysocki AB (1999) Skin anatomy, physiology, and pathophysiology. Nurs Clin North America 34:777–797Google Scholar
  33. 33.
    Plascencia-Villa G, Bahena D, Rodríguez AR, Ponce A, José-Yacamán M (2013) Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages. Metallomics 5:242–250CrossRefGoogle Scholar
  34. 34.
    Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM (2015) A sunblock based on bioadhesive nanoparticles. Nat Mater 14:1278–1285CrossRefGoogle Scholar
  35. 35.
    Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712CrossRefGoogle Scholar
  36. 36.
    Zhang X, Le TA, Yoon J (2016) Development of a magnetic nanoparticles guidance system for interleaved actuation and MPI-based monitoring. In: IEEE international conference on intelligent robots and systems (IROS), 2016 IEEE/RSJ, pp 5279–5284Google Scholar
  37. 37.
    Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q (2017) Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angew Chem Int Ed 56:12935–12939CrossRefGoogle Scholar
  38. 38.
    Lalka D, Griffith RK, Cronenberger CL (1993) The hepatic first-pass metabolism of problematic drugs. J Clin Pharmacol 33:657–669CrossRefGoogle Scholar
  39. 39.
    Milici AJ, L’Hernault N, Palade GE (1985) Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 56:709–717CrossRefGoogle Scholar
  40. 40.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515CrossRefGoogle Scholar
  41. 41.
    Chahibi Y, Pierobon M, Song SO, Akyildiz IF (2013) A molecular communication system model for particulate drug delivery systems. IEEE Trans Biomed Eng 60:3468–3483CrossRefGoogle Scholar
  42. 42.
    Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y (2013) The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluid 14:77–87CrossRefGoogle Scholar
  43. 43.
    Fullstone G, Wood J, Holcombe M, Battaglia G (2015) Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci Rep 5:10649CrossRefGoogle Scholar
  44. 44.
    Kelley WJ, Safari H, Lopez-Cazares G, Eniola-Adefeso O (2016) Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases. Wiley Interdisc Rev Nanomed Nanobiotechnol 8:909–926CrossRefGoogle Scholar
  45. 45.
    Jelinek R (2015) Nanoparticles. Walter de Gruyter GmbH & Co KGGoogle Scholar
  46. 46.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951CrossRefGoogle Scholar
  47. 47.
    Yoo JW, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307CrossRefGoogle Scholar
  48. 48.
    Voigt J, Christensen J, Shastri VP (2014) Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc Natl Acad Sci 111:2942–2947CrossRefGoogle Scholar
  49. 49.
    Wang Z, Tiruppathi C, Minshall RD, Malik AB (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3:4110–4116CrossRefGoogle Scholar
  50. 50.
    Schnitzer J (1992) gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 262:H246–H254Google Scholar
  51. 51.
    Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105–113CrossRefGoogle Scholar
  52. 52.
    Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus: insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188:82–97CrossRefGoogle Scholar
  53. 53.
    Hrabětová S, Nicholson C (2007) Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  54. 54.
    Dukhin SS, Labib ME (2013) Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Adv Coll Interface Sci 199:23–43CrossRefGoogle Scholar
  55. 55.
    Wolak DJ, Thorne RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 10:1492–1504CrossRefGoogle Scholar
  56. 56.
    Yao W, Li Y, Ding G (2012) Interstitial fluid flow: the mechanical environment of cells and foundation of meridians. Evid Based Complement Altern Med 2012:1–9Google Scholar
  57. 57.
    Stylianopoulos T et al (2010) Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 99:1342–1349CrossRefGoogle Scholar
  58. 58.
    Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664CrossRefGoogle Scholar
  59. 59.
    Kumar Khanna V (2012) Targeted delivery of nanomedicines. ISRN Pharmacol 2012:1–9CrossRefGoogle Scholar
  60. 60.
    Kawano K, Maitani Y (2011) Effects of polyethylene glycol spacer length and ligand density on folate receptor targeting of liposomal Doxorubicin in vitro. J Drug Deliv 2011:160967CrossRefGoogle Scholar
  61. 61.
    Chude-Okonkwo UAK, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutorials 19:3046–3096CrossRefGoogle Scholar
  62. 62.
    Chude-Okonkwo UAK, Malekian BT Maharaj (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobiosci 15(3):230–245CrossRefGoogle Scholar
  63. 63.
    Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679CrossRefGoogle Scholar
  64. 64.
    Chung SH, Kuyucak S (2002) Recent advances in ion channel research. Biochimica et Biophysica Acta (BBA)—Biomembranes 1565:267–286CrossRefGoogle Scholar
  65. 65.
    Sukharev S, Sachs F (2012) Molecular force transduction by ion channels–diversity and unifying principles. J Cell Sci 125:3075–3083CrossRefGoogle Scholar
  66. 66.
    Saltzman WM (2001) Drug delivery: engineering principles for drug therapy. Oxford University Press, USAGoogle Scholar
  67. 67.
    Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 7:585–599Google Scholar
  68. 68.
    Farsad N, Eckford AW, Hiyama S (2012) A mathematical channel optimization formula for active transport molecular communication. In: IEEE international conference on communications (ICC), June, Ottawa, ON, Canada, pp 6137–6141Google Scholar
  69. 69.
    Farsad N, Eckford AW, Hiyama S (2014) A Markov chain channel model for active transport molecular communication. IEEE Trans Signal Process 62:2424–2436CrossRefGoogle Scholar
  70. 70.
    Farsad N, Eckford AW, Hiyama S, Moritani Y (2011) Quick system design of vesicle-based active transport molecular communication by using a simple transport model. Nano Commun Netw 2:175–188CrossRefGoogle Scholar
  71. 71.
    Darchinimaragheh K, Alfa AS (2015) An analytical model for molecular propagation in nanocommunication via filaments using relay-enabled nodes. IEEE Trans Nanobiosci 14:870–881CrossRefGoogle Scholar
  72. 72.
    Chahibi Y, Akyildiz IF, Balasingham I (2016) Propagation modeling and analysis of molecular motors in molecular communication. IEEE Trans Nanobiosci 15(8):917–927CrossRefGoogle Scholar
  73. 73.
    Goldsmith M, Abramovitz L, Peer D (2014) Precision nanomedicine in neurodegenerative diseases. ACS Nano 8:1958–1965CrossRefGoogle Scholar
  74. 74.
    Balevi E, Akan OB (2013) A physical channel model for nanoscale neuro-spike communications. IEEE Trans Commun 61:1178–1187CrossRefGoogle Scholar
  75. 75.
    Malak D, Akan OB (2013) A communication theoretical analysis of synaptic multiple-access channel in hippocampal-cortical neurons. IEEE Trans Commun 61:2457–2467CrossRefGoogle Scholar
  76. 76.
    Mesiti F, Balasingham I (2013) Nanomachine-to-neuron communication interfaces for neuronal stimulation at nanoscale. IEEE J Sel Areas Commun 31:695–704CrossRefGoogle Scholar
  77. 77.
    Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M (2013) Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 52:83–124CrossRefGoogle Scholar
  78. 78.
    Marcato PD (2014) Pharmacokinetics and pharmacodynamics of nanomaterials. Nanotoxicology 97–110Google Scholar
  79. 79.
    Li D, Emond C, Johanson G, Jolliet O (2013) Using a PBPK model to study the influence of different characteristics of nanoparticles on their biodistribution. J Phys Conf Ser, 012019Google Scholar
  80. 80.
    Li M, Al-Jamal KT, Kostarelos K, Reineke J (2010) Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4:6303–6317CrossRefGoogle Scholar
  81. 81.
    Nicholson C, Syková E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215CrossRefGoogle Scholar
  82. 82.
    Welter M, Rieger H (2013) Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS ONE 8:e70395–e70395CrossRefGoogle Scholar
  83. 83.
    Liu Y, Shah S, Tan J (2012) Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol 1:66–83CrossRefGoogle Scholar
  84. 84.
    Chahibi Y, Pierobon M, Akyildiz IF (2015) Pharmacokinetic modeling and biodistribution estimation through the molecular communication paradigm. IEEE Trans Biomed Eng 62:2410–2420CrossRefGoogle Scholar
  85. 85.
    Chahibi Y, Akyildiz IF (2014) Molecular communication noise and capacity analysis for particulate drug delivery systems. IEEE Trans Commun 62:3891–3903CrossRefGoogle Scholar
  86. 86.
    Felicetti L, Femminella M, Reali G, Gresele P, Malvestiti M, Daigle JN (2014) Modeling CD40-based molecular communications in blood vessels. IEEE Trans Nanobiosci 13:230–243CrossRefGoogle Scholar
  87. 87.
    Siepmann J, Siepmann F, Florence A (2006) Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. Int J Pharm 314:101–119CrossRefGoogle Scholar
  88. 88.
    Zhang D, Luo G, Ding X, Lu C (2012) Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B 2:549–561CrossRefGoogle Scholar
  89. 89.
    Fu BM (2012) Experimental methods and transport models for drug delivery across the blood-brain barrier. Curr Pharm Biotechnol 13:1346–1359CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uche Chude-Okonkwo
    • 1
  • Reza Malekian
    • 1
    Email author
  • B. T. Maharaj
    • 1
  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of PretoriaHatfield, PretoriaSouth Africa

Personalised recommendations