Nanosystems and Devices for Advanced Targeted Nanomedical Applications

  • Uche Chude-Okonkwo
  • Reza MalekianEmail author
  • B. T. Maharaj
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


In the previous chapters, we discussed the relationship between communication engineering and medicine/healthcare delivery. We have espoused the view that communication between cells is vital to their health and to the effective working of the human body. Hence, breakdown in communication results in diseases, and to treat the diseases implies normalising the communication breakdown among the implicated cells, tissues and organs. The application of the ATN solutions is proposed to normalise the breakdown in communication within the cellular/organ network, and hence treat diseases. The ATN solution is a very complex one that involves the assembly and operation of materials, techniques, components, devices and networks whose dimensions range from the nanoscale to the macroscale.


  1. 1.
    Wiederrecht G (2010) Handbook of nanofabrication. Academic PressGoogle Scholar
  2. 2.
    Nishimura Y, Ishii J, Ogino C, Kondo A (2014) Genetic engineering of bio-nanoparticles for drug delivery: a review. J Biomed Nanotechnol 10:2063–2085CrossRefGoogle Scholar
  3. 3.
    Yoo JW, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535CrossRefGoogle Scholar
  4. 4.
    Tan S, Wu T, Zhang D, Zhang Z (2015) Cell or cell membrane-based drug delivery systems. Theranostics 5:863CrossRefGoogle Scholar
  5. 5.
    Lockney D, Franzen S, Lommel S (2011) Viruses as nanomaterials for drug delivery. Biomed Nanotechnol Methods Protocols, 207–221Google Scholar
  6. 6.
    Esfandiari N, Arzanani MK, Soleimani M, Kohi-Habibi M, Svendsen WE (2016) A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumor Biol 37:1229–1236CrossRefGoogle Scholar
  7. 7.
    Steidler L (2004) Live genetically modified bacteria as drug delivery tools: at the doorstep of a new pharmacology? Exp Opin Biol Ther 4:439–441CrossRefGoogle Scholar
  8. 8.
    Yacoby I, Bar H, Benhar I (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agent Chemother 51:2156–2163CrossRefGoogle Scholar
  9. 9.
    Su Y, Xie Z, Kim GB, Dong C, Yang J (2015) Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 1:201–217CrossRefGoogle Scholar
  10. 10.
    Batrakova EV, Gendelman HE, Kabanov AV (2011) Cell-mediated drug delivery. Exp Opin Drug Deliv 8:415–433CrossRefGoogle Scholar
  11. 11.
    Boehm F (2016) Nanomedical device and systems design: challenges, possibilities, visions. CRC PressGoogle Scholar
  12. 12.
    Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutor 19:3046–3096CrossRefGoogle Scholar
  13. 13.
    Rogers K (2012) The kidneys and the renal system. Britannica Educ Publ, New YorkGoogle Scholar
  14. 14.
    Milici AJ, L’Hernault N, Palade GE (1985) Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 56:709–717CrossRefGoogle Scholar
  15. 15.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515CrossRefGoogle Scholar
  16. 16.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951CrossRefGoogle Scholar
  17. 17.
    Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295CrossRefGoogle Scholar
  18. 18.
    Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717CrossRefGoogle Scholar
  19. 19.
    Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev 92:1005–1060CrossRefGoogle Scholar
  20. 20.
    Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137CrossRefGoogle Scholar
  21. 21.
    Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed Nanotechnol Biol Med 1:313–316CrossRefGoogle Scholar
  22. 22.
    Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioeng 9:467–508CrossRefGoogle Scholar
  23. 23.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102CrossRefGoogle Scholar
  24. 24.
    Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18CrossRefGoogle Scholar
  25. 25.
    Lasic DD (1998) Novel applications of liposomes. Tr Biotechnol 16:307–321CrossRefGoogle Scholar
  26. 26.
    Shi J, He J, Deng R, Wei Y, Long F, Cheng Y et al (2017) Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera. Opt Express 25:15905–15912CrossRefGoogle Scholar
  27. 27.
    Kiel C, Yus E, Serrano L (2010) Engineering signal transduction pathways. Cell 140:33–47CrossRefGoogle Scholar
  28. 28.
    Fakhrullin RF, Zamaleeva AI, Minullina RT, Konnova SA, Paunov VN (2012) Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem Soc Rev 41:4189–4206CrossRefGoogle Scholar
  29. 29.
    Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134CrossRefGoogle Scholar
  30. 30.
    Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627CrossRefGoogle Scholar
  31. 31.
    Wegmann U, Carvalho AL, Stocks M, Carding SR (2017) Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci Reports 7:2294Google Scholar
  32. 32.
    Hess B (2000) Periodic patterns in biology. Naturwissenschaften 87:199–211CrossRefGoogle Scholar
  33. 33.
    Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336:915–918CrossRefGoogle Scholar
  34. 34.
    Kuran MS, Yilmaz HB, Tugcu T, Özerman B (2010) Energy model for communication via diffusion in nanonetworks. Nano Commun Netw 1:86–95CrossRefGoogle Scholar
  35. 35.
    Chude-Okonkwo UA (2014) Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery. In: 2014 IEEE Global Communications Conference, pp 2826–2831Google Scholar
  36. 36.
    Okonkwo UA, Malekian R, Maharaj BT (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobiosci 15(3):230–245CrossRefGoogle Scholar
  37. 37.
    Oberholzer T, Meyer E, Amato I, Lustig A, Monnard PA (1999) Enzymatic reactions in liposomes using the detergent-induced liposome loading method. Biochimica et Biophysica Acta (BBA)—Biomembr 1416:57–68CrossRefGoogle Scholar
  38. 38.
    Matsumoto R, Kakuta M, Sugiyama T, Goto Y, Sakai H, Tokita Y et al (2010) A liposome-based energy conversion system for accelerating the multi-enzyme reactions. Phys Chem Chem Phys 12:13904–13906CrossRefGoogle Scholar
  39. 39.
    Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834CrossRefGoogle Scholar
  40. 40.
    Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, et al (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258CrossRefGoogle Scholar
  41. 41.
    Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S (2009) Nanorobot for brain aneurysm. Int J Robot Res 28:558–570CrossRefGoogle Scholar
  42. 42.
    Dollard MA, Billard P (2003) Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. J Microbiol Methods 55:221–229CrossRefGoogle Scholar
  43. 43.
    Yeo D, Wiraja C, Chuah YJ, Gao Y, Xu C (2015) A nanoparticle-based sensor platform for cell tracking and status/function assessment. Sci Reports 5:14768CrossRefGoogle Scholar
  44. 44.
    Eckert MA, Vu PQ, Zhang K, Kang D, Ali MM, Xu C et al (2013) Novel molecular and nanosensors for in vivo sensing. Theranostics 3(8):583–594CrossRefGoogle Scholar
  45. 45.
    Monson E, Brasuel M, Philbert M, Kopelman R (2003) PEBBLE nanosensors for in vitro bioanalysis. Biomed Photonics Handb 9Google Scholar
  46. 46.
    Gu MB, Kim HS (2014) Biosensors based on aptamers and enzymes, vol 140. SpringerGoogle Scholar
  47. 47.
    Roberts JR, Park J, Helton K, Wisniewski N, McShane MJ (2012) Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics. J Diabetes Sci Technol 6:1267–1275CrossRefGoogle Scholar
  48. 48.
    Kuscu M, Akan OB (2016) On the physical design of molecular communication receiver based on nanoscale biosensors. IEEE Sens J 16:2228–2243CrossRefGoogle Scholar
  49. 49.
    Feringa BL, Browne WR (2011) Molecular switches. WileyGoogle Scholar
  50. 50.
    Li H, Qu DH (2015) Recent advances in new-type molecular switches. Sci China Chem 58:916–921CrossRefGoogle Scholar
  51. 51.
    Sivan S, Tuchman S, Lotan N (2003) A biochemical logic gate using an enzyme and its inhibitor. Part II: the logic gate. Biosystems 70:21–33CrossRefGoogle Scholar
  52. 52.
    Katz E, Privman V, Wang J (2010) Towards biosensing strategies based on biochemical logic systems. In: Fourth international conference on quantum, nano and micro technologies, ICQNM’10, pp 1–9Google Scholar
  53. 53.
    Privman V, Katz E (2015) Can bio-inspired information processing steps be realized as synthetic biochemical processes? Physica Status Solidi (a) 212:219–228CrossRefGoogle Scholar
  54. 54.
    Stein V, Alexandrov K (2015) Synthetic protein switches: design principles and applications. Trends Biotechnol 33:101–110CrossRefGoogle Scholar
  55. 55.
    Hansen CH, Yang D, Koussa MA, Wong WP (2017) Nanoswitch-linked immunosorbent assay (NLISA) for fast, sensitive, and specific protein detection. Proc Nat Acad Sci 114:10367–10372CrossRefGoogle Scholar
  56. 56.
    Dasgupta T, Croll DH, Owen JA, Vander Heiden MG, Locasale JW, Alon U et al (2014) A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis. J Biol Chem 289:13010–13025CrossRefGoogle Scholar
  57. 57.
    Ostermeier M (2005) Engineering allosteric protein switches by domain insertion. Protein Eng Design Sel 18:359–364CrossRefGoogle Scholar
  58. 58.
    Pohanka M, Skládal P (2008) Electrochemical biosensors: principles and applications. J Appl Biomed 6(2):57–64Google Scholar
  59. 59.
    Ullah S, Mohaisen M, Alnuem MA (2013) A review of IEEE 802.15. 6 MAC, PHY, and security specifications. Int J Distrib Sens Netw 9:950704CrossRefGoogle Scholar
  60. 60.
    Darwish A, Hassanien AE (2011) Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11:5561–5595CrossRefGoogle Scholar
  61. 61.
    Zhen B, Li HB, Kohno R (2007) IEEE body area networks for medical applications. In: 4th international symposium on wireless communication systems ISWCS, pp 327-331Google Scholar
  62. 62.
    Negra R, Jemili I, Belghith A (2016) Wireless body area networks: applications and technologies. Procedia Comput Sci 83:1274–1281CrossRefGoogle Scholar
  63. 63.
    Smith DB, Hanlen LW (2015) Channel modeling for wireless body area networks. In: Ultra-low-power short-range radios. Springer, pp 25–55Google Scholar
  64. 64.
    Balouchestani M, Raahemifar K, Krishnan S (2013) New channel model for wireless body area network with compressed sensing theory. IET Wireless Sensor Syst 3:85–92CrossRefGoogle Scholar
  65. 65.
    Tsolaki A, Kazis D, Kompatsiaris I, Kosmidou V, Tsolaki M (2014) Electroencephalogram and Alzheimer’s disease: clinical and research approaches. Int J Alzheimer’s Disease 2014:349249CrossRefGoogle Scholar
  66. 66.
    Natarajan A, Parate A, Gaiser E, Angarita G, Malison R, Marlin B, et al (2013) Detecting cocaine use with wearable electrocardiogram sensors. In: Proceedings of the 2013 ACM international joint conference on Pervasive and Ubiquitous computing, pp 123–132Google Scholar
  67. 67.
    Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10:60CrossRefGoogle Scholar
  68. 68.
    De Freitas GS, Mituuti CT, Furkim AM, Busanello-Stella AR, Stefani FM, Arone MMAD et al (2016) Electromyography biofeedback in the treatment of neurogenic orofacial disorders: systematic review of the literature. Audiol Commun Res 21Google Scholar
  69. 69.
    Iversen NK, Frische S, Thomsen K, Laustsen C, Pedersen M, Hansen PB et al (2013) Superparamagnetic iron oxide polyacrylic acid coated γ-Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice. Toxicol Appl Pharmacol 266:276–288CrossRefGoogle Scholar
  70. 70.
    Heikal L, Starr A, Martin GP, Nandi M, Dailey LA (2016) In vivo pharmacological activity and biodistribution of S-nitrosophytochelatins after intravenous and intranasal administration in mice. Nitric Oxide 59:1–9CrossRefGoogle Scholar
  71. 71.
    Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, et al (2017) Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 3:e1601314CrossRefGoogle Scholar
  72. 72.
    Wu JZ, Williams GR, Li HY, Wang D, Wu H, Li SD, et al (2017) Glucose-and temperature-sensitive nanoparticles for insulin delivery. Int J Nanomed 12:4037CrossRefGoogle Scholar
  73. 73.
    Rehman A, Setter SM, Vue MH (2011) Drug-induced glucose alterations part 2: drug-induced hyperglycemia. Diabetes Spectrum 24:234–238CrossRefGoogle Scholar
  74. 74.
    Blackburn DF, Wilson TW (2006) Antihypertensive medications and blood sugar: theories and implications. Can J Cardiol 22:229–233CrossRefGoogle Scholar
  75. 75.
    Chude-Okonkwo UA, Malekian R, Maharaj BT (2016) Biologically inspired bio-cyber interface architecture and model for Internet of Bio-NanoThings applications. IEEE Trans Commun 64:3444–3455CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uche Chude-Okonkwo
    • 1
  • Reza Malekian
    • 1
    Email author
  • B. T. Maharaj
    • 1
  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of PretoriaHatfield, PretoriaSouth Africa

Personalised recommendations