Advertisement

Communication Engineering Meets Medical Science: The Advanced Targeted Nanomedical Solution

  • Uche Chude-Okonkwo
  • Reza MalekianEmail author
  • B. T. Maharaj
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

With the rise in global population, the increase in the number of medically challenging diseases and the low number (as well as uneven distribution) of medical personnel, there is the need for a new approach to global healthcare delivery. In particular, the lack of clear-cut, permanent cures for cancer, Alzheimer’s disease, human immunodeficiency virus (HIV), diabetes, cardiovascular diseases (such as severe coronary artery disease) and Ebola, as well as the projected increase in the proportion of the population at risk of some of these diseases (Jemal et al. in J Nat Cancer Inst 100, 2017 [1], Association in Alzheimer’s Dement 14:367–429, 2018 [2]) means that everyone has something to worry about.

References

  1. 1.
    Jemal A, Ward EM et al (2017) Annual report to the nation on the status of cancer, 1975–2014, featuring survival. J Nat Cancer Inst 109Google Scholar
  2. 2.
    Association AS (2018) Alzheimer’s disease facts and figures. Alzheimer’s Dement 14:367–429CrossRefGoogle Scholar
  3. 3.
    Feynman RP (1959) There’s plenty of room at the bottom. Miniaturization, 282–296Google Scholar
  4. 4.
    Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217CrossRefGoogle Scholar
  5. 5.
    Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutor 19(4):3046–3096CrossRefGoogle Scholar
  6. 6.
    Debbage P (2009) Targeted drugs and nanomedicine: present and future. Current Pharm Des 15:153–172CrossRefGoogle Scholar
  7. 7.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701CrossRefGoogle Scholar
  8. 8.
    Muthu MS, Singh S (2009) Targeted nanomedicines: effective treatment modalities for cancer. AIDS and brain disorders. Futur Med 4(1):105–118Google Scholar
  9. 9.
    Gregori M, Masserini M, Mancini S (2015) Nanomedicine for the treatment of Alzheimer’s disease. Nanomedicine 10:1203–1218CrossRefGoogle Scholar
  10. 10.
    Krol S, Ellis-Behnke R, Marchetti P (2012) Nanomedicine for treatment of diabetes in an aging population: state-of-the-art and future developments. Nanomed Nanotechnol Biol Med 8:S69–S76CrossRefGoogle Scholar
  11. 11.
    Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M (2010) Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 31:199–205CrossRefGoogle Scholar
  12. 12.
    Bozic I, Allen B, Nowak MA (2012) Dynamics of targeted cancer therapy. Tr Mol Med 18:311–316CrossRefGoogle Scholar
  13. 13.
    Bar-Zeev M, Livney YD, Assaraf YG (2017) Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Res Updat 31:15–30CrossRefGoogle Scholar
  14. 14.
    Peng X, Xing P, Li X, Qian Y, Song F, Bai Z, Han G, Lei H (2016) Towards personalized intervention for Alzheimer’s disease. Gen Proteomics Bioinf 14:289–297CrossRefGoogle Scholar
  15. 15.
    Bazigou E, Rallis C (2007) Cell signaling and cancer. Genome Biol 8:1–3CrossRefGoogle Scholar
  16. 16.
    Ho GJ, Drego R, Hakimian E, Masliah E (2005) Mechanisms of cell signaling and inflammation in Alzheimer’s disease. Curr Drug Targets-Inflam Allerg 4:247–256CrossRefGoogle Scholar
  17. 17.
    Heink S, Yogev N, Garbers C, Herwerth M, Aly L, Gasperi C et al (2017) Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic T H 17 cells. Nat Immunol 18:74–85CrossRefGoogle Scholar
  18. 18.
    Seino S, Shibasaki T, Minami K (2010) Pancreatic β-cell signaling: toward better understanding of diabetes and its treatment. Proc Jpn Acad, Series B 86:563–577CrossRefGoogle Scholar
  19. 19.
    Guo S, Lo EH (2009) Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40:S4–S7CrossRefGoogle Scholar
  20. 20.
    Suda T, Moore M, Nakano T, Egashira R, Enomoto A, Hiyama S, Moritani Y (2005) Exploratory research on molecular communication between nanomachines. Gen Evolut Comput Conf (GECCO) Late Break Papers 25:29–34Google Scholar
  21. 21.
    Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52:2260–2279CrossRefGoogle Scholar
  22. 22.
    Nakano T, Eckford AW, Haraguchi T (2013) Molecular communication. Cambridge University PressGoogle Scholar
  23. 23.
    Nakano T, Suda T, Okaie Y, Moore MJ, Vasilakos AV (2014) Molecular communication among biological nanomachines: a layered architecture and research issues. IEEE Trans Nanobio 13:169–197CrossRefGoogle Scholar
  24. 24.
    Chude-Okonkwo UA (2014) Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery. IEEE Global Commun Conf, pp 2826–2831Google Scholar
  25. 25.
    Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199CrossRefGoogle Scholar
  26. 26.
    Swaney WT, Keverne EB (2009) The evolution of pheromonal communication. Behav Brain Res 200:239–247CrossRefGoogle Scholar
  27. 27.
    Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. The Lancet 383:69–82CrossRefGoogle Scholar
  28. 28.
    Grover WD (2004) Mesh-based survivable networks: options and strategies for optical, MPLS, SONET, and ATM networking. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  29. 29.
    Avci SN, Hu X, Ayanoglu E (2011) Recovery from link failures in networks with arbitrary topology via diversity coding. IEEE Global Telecommun Conf (GLOBECOM 2011), pp 1–6Google Scholar
  30. 30.
    Vasseur JP, Pickavet M, Demeester P (2004) Network recovery: protection and restoration of optical, SONET-SDH, IP, and MPLS. ElsevierGoogle Scholar
  31. 31.
    Neogy S (2015) Checkpointing with minimal recover in Adhocnet based TMR. Int J UbiComp 6(4):28–44CrossRefGoogle Scholar
  32. 32.
    Habibi D, Phung QV (2012) Graph theory for survivability design in communication networks. In Zhang Y (ed) New frontiers in graph theory. InTechGoogle Scholar
  33. 33.
    Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S et al (2017) Diverse applications of nanomedicine. ACS Nano 11(13):2313–2381CrossRefGoogle Scholar
  34. 34.
    Sadovoy A, Teh C (2015) Encapsulated biosensors for advanced tissue diagnostics. In: Meglinsky I (ed) Biophotonics for medical applications, pp 321–330CrossRefGoogle Scholar
  35. 35.
    Clewell HJ, Gearhart JM, Gentry PR, Covington TR, Van Landingham CB, Crump KS, Shipp AM (1999) Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics. Risk Anal 19:547–558Google Scholar
  36. 36.
    Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. Journal of Controlled Release 153:198CrossRefGoogle Scholar
  37. 37.
    Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11CrossRefGoogle Scholar
  38. 38.
    Understanding chemotherapy: A guide for patients and families (2014) Atlanta, GA: American Cancer SocietyGoogle Scholar
  39. 39.
    Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37CrossRefGoogle Scholar
  40. 40.
    Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079CrossRefGoogle Scholar
  41. 41.
    Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2014) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394CrossRefGoogle Scholar
  42. 42.
    Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305CrossRefGoogle Scholar
  43. 43.
    Ghaghada KB, Saul J, Natarajan JV, Bellamkonda RV, Annapragada AV (2005) Folate targeting of drug carriers: a mathematical model. J Controll Release 104:113–128CrossRefGoogle Scholar
  44. 44.
    Chen X, Cheng X, Gooding JJ (2012) Multifunctional modified silver nanoparticles as ion and pH sensors in aqueous solution. Analyst 137:2338–2343CrossRefGoogle Scholar
  45. 45.
    Jin Y, Jia C, Huang SW, O’Donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41–48CrossRefGoogle Scholar
  46. 46.
    Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217CrossRefGoogle Scholar
  47. 47.
    Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Nat Cancer Inst 99:1095–1106CrossRefGoogle Scholar
  48. 48.
    Balasubramaniam S, Ben-Yehuda S, Pautot S, Jesorka A, Koucheryavy Y (2013) A review of experimental opportunities for molecular communication. Nano Commun Netw 4:43–52CrossRefGoogle Scholar
  49. 49.
    Nakano T, Moore MJ, Wei F, Vasilakos AV, Shuai J (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans Nanobio 11:135–148CrossRefGoogle Scholar
  50. 50.
    Farsad N, Yilmaz HB, Eckford A, Chae CB, Guo W (2014) A comprehensive survey of recent advancements in molecular communication. IEEE Commun Surv Tutor 18(3):1887–1919CrossRefGoogle Scholar
  51. 51.
    Abbasi QH, Yang K, Chopra N, Jornet JM, Abuali NA, Qaraqe KA, Alomainy A (2016) Nano-Communication for biomedical applications: a review on the state-of-the-art from physical layers to novel networking concepts. IEEE Access 4:3920–3935CrossRefGoogle Scholar
  52. 52.
    Chahibi Y, Pierobon M, Song SO, Akyildiz IF (2013) A molecular communication system model for particulate drug delivery systems. IEEE Trans Biomed Eng 60:3468–3483CrossRefGoogle Scholar
  53. 53.
    Wei G, Marculescu R (2014) Miniature devices in the wild: modeling molecular communication in complex extracellular spaces. IEEE J Sel Areas Commun 32:2344–2353CrossRefGoogle Scholar
  54. 54.
    Chahibi Y, Akyildiz IF (2014) Molecular communication noise and capacity analysis for particulate drug delivery systems. IEEE Trans Commun 62:3891–3903CrossRefGoogle Scholar
  55. 55.
    Okonkwo UA, Malekian R, Maharaj BT (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobio 15(3):230–245CrossRefGoogle Scholar
  56. 56.
    Chahibi Y, Balasingham I (2015) An intra-body molecular communication networks framework for continuous health monitoring and diagnosis. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 4077–4080Google Scholar
  57. 57.
    Reitz C (2016) Toward precision medicine in Alzheimer’s disease. Annals of Transl Med 4(6):107–113CrossRefGoogle Scholar
  58. 58.
    Lammers T, Rizzo LY, Storm G, Kiessling F (2012) Personalized nanomedicine. Clin Cancer Res 18:4889–4894CrossRefGoogle Scholar
  59. 59.
    Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363–1384CrossRefGoogle Scholar
  60. 60.
    Atakan B, Akan OB, Balasubramaniam S (2012) Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun Mag 50:28–34CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uche Chude-Okonkwo
    • 1
  • Reza Malekian
    • 1
    Email author
  • B. T. Maharaj
    • 1
  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of PretoriaHatfield, PretoriaSouth Africa

Personalised recommendations