Advertisement

Biorefinery pp 211-232 | Cite as

Ethanol-Water Separation Using Membrane Technology

  • Munirasu Selvaraj
  • Fawzi BanatEmail author
Chapter

Abstract

The availability and easy access of renewable energy make biofuel as an attractive option for the transition, away from the fossil fuel. Ethanol produced by the fermentation process is so far the dominant biofuel, and production of bioethanol at cost-effective method is the ongoing challenge. Since bioethanol production involves highly diluted fermentation process, apart from fermentation, separation and purification of ethanol is the heart of biorefinery process. The majority of the energy requirement is involved in the separation and purification of ethanol from the other species present in the fermentation broth. So far, energy-intensive distillation process followed by adsorption is the conventional method for the separation and purification of bioethanol. The membrane technology offers an alternative that requires less energy during ethanol separation. In this chapter, we briefly discuss the background of the ethanol biorefinery process in order to understand the separation process. The membrane preparation process is discussed in detail. The separation and purification of bioethanol using membrane involve two different kinds of membrane materials, namely, organophilic membranes for the ethanol enrichment from the fermentation broth and hydrophilic membranes for the dehydration of the enriched ethanol into fuel grade ethanol. Selective literature reports are cited, and finally, the summary and some perspective for the future direction of membrane technology for the ethanol-water separation are given.

Keywords

Ethanol Bioethanol Biorefinery Membrane technologies Pervaporation 

References

  1. Adymkanov SV, Yampol’skii YP, Polyakov AM, Budd PM, Reynolds KJ, McKeown NB, Msayib KJ (2008) Pervaporation of alcohols through highly permeable PIM-1 polymer films. Polym Sci Ser A 50(4):444–450.  https://doi.org/10.1134/S0965545X08040135CrossRefGoogle Scholar
  2. Ambrosi A, Al-Furaiji M, McCutcheon JR, Cardozo NSM, Tessaro IC (2018) Transport of components in the separation of ethanol from aqueous dilute solutions by forward osmosis. Ind Eng Chem Res 57(8):2967–2975.  https://doi.org/10.1021/acs.iecr.7b04944CrossRefGoogle Scholar
  3. Amelio A, Van der Bruggen B, Lopresto C, Verardi A, Calabro V, Luis P (2016) Pervaporation membrane reactors. In: Membrane technologies for biorefining. pp 331–381.  https://doi.org/10.1016/b978-0-08-100451-7.00014-1CrossRefGoogle Scholar
  4. Aoki T, Kobayashi H, Oikawa E (1995) Poly(p-substituted phenylacetylene) with perfluoroalkyloxydimethylsilyl side groups for oxygen and ethanol permselective membrane. Polym Bull 34(2):133–140.  https://doi.org/10.1007/BF00316387CrossRefGoogle Scholar
  5. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, West SussexCrossRefGoogle Scholar
  6. Banat FA, Shannag MA (2000) Recovery of dilute acetone–butanol–ethanol (ABE) solvents from aqueous solutions via membrane distillation. Bioprocess Eng 23:43–649CrossRefGoogle Scholar
  7. Bolto B, Hoang M, Xie Z (2011) A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem Eng Process Process Intensif 50(3):227–235.  https://doi.org/10.1016/j.cep.2011.01.003CrossRefGoogle Scholar
  8. Bungay HR (2004) Confessions of a bioenergy advocate. Trends Biotechnol 22(2):67–71.  https://doi.org/10.1016/j.tibtech.2003.12.002CrossRefGoogle Scholar
  9. Cai D, Chen H, Chen C, Hu S, Wang Y, Chang Z, Miao Q, Qin P, Wang Z, Wang J, Tan T (2016) Gas stripping–pervaporation hybrid process for energy-saving product recovery from acetone–butanol–ethanol (ABE) fermentation broth. Chem Eng J 287:1–10.  https://doi.org/10.1016/j.cej.2015.11.024CrossRefGoogle Scholar
  10. Chen S-H, Liou R-M, Lin Y-Y, Lai C-L, Lai J-Y (2009) Preparation and characterizations of asymmetric sulfonated polysulfone membranes by wet phase inversion method. Eur Polym J 45(4):1293–1301.  https://doi.org/10.1016/j.eurpolymj.2008.11.030CrossRefGoogle Scholar
  11. Chovau S, Degrauwe D, Van der Bruggen B (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sust Energ Rev 26:307–321.  https://doi.org/10.1016/j.rser.2013.05.064CrossRefGoogle Scholar
  12. Claes S, Vandezande P, Mullens S, De Sitter K, Peeters R, Van Bael MK (2012) Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes. J Membr Sci 389:265–271.  https://doi.org/10.1016/j.memsci.2011.10.035CrossRefGoogle Scholar
  13. Curcio S, De Luca G, Saha K, Chakraborty S (2016) 1—advance membrane separation processes for biorefineries. In: Figoli A, Cassano A, Basile A (eds) Membrane technologies for biorefining. Woodhead Publishing, Cambridge, pp 3–28.  https://doi.org/10.1016/B978-0-08-100451-7.00001-3CrossRefGoogle Scholar
  14. Dong YQ, Zhang L, Shen JN, Song MY, Chen HL (2006) Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 193(1–3):202–210.  https://doi.org/10.1016/j.desal.2005.08.023CrossRefGoogle Scholar
  15. Efremenko EN, Stepanov NA, Nikolskaya AB, Senko OV, Spiricheva OV, Varfolomeev SD (2011) Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catal Ind 3(1):41–46.  https://doi.org/10.1134/s207005041101003xCrossRefGoogle Scholar
  16. Fan S, Xiao Z, Li M, Li S, Zhou T, Hu Y, Wu S (2017) Pervaporation performance in PDMS membrane bioreactor for ethanol recovery with running water and air as coolants at room temperature. J Chem Technol Biotechnol 92(2):292–297.  https://doi.org/10.1002/jctb.5004CrossRefGoogle Scholar
  17. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628.  https://doi.org/10.1007/s00253-002-1058-9CrossRefGoogle Scholar
  18. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800.  https://doi.org/10.1016/j.biortech.2010.01.088CrossRefGoogle Scholar
  19. González-Marcos JA, López-Dehesa C, González-Velasco JR (2004) Effect of operation conditions in the pervaporation of ethanol–water mixtures with poly(1-trimethylsilyl-1-propyne) membranes. J Appl Polym Sci 94(4):1395–1403.  https://doi.org/10.1002/app.21029CrossRefGoogle Scholar
  20. Heisler EG, Hunter AS, Siciliano J, Treadway RH (1956) Solute and temperature effects in the pervaporation of aqueous alcoholic solutions. Science 124:77–79CrossRefGoogle Scholar
  21. Huang Z, Shi Y, Wen R, Guo Y-H, Su J-F, Matsuura T (2006) Multilayer poly(vinyl alcohol)–zeolite 4A composite membranes for ethanol dehydration by means of pervaporation. Sep Purif Technol 51(2):126–136.  https://doi.org/10.1016/j.seppur.2006.01.005CrossRefGoogle Scholar
  22. Huang S-H, Hung W-S, Liaw D-J, Lo C-H, Chao W-C, Hu C-C, Li C-L, Lee K-R, Lai J-Y (2010) Interfacially polymerized thin-film composite polyamide membranes: effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions. Sep Purif Technol 72(1):40–47.  https://doi.org/10.1016/j.seppur.2009.12.026CrossRefGoogle Scholar
  23. Huang Y-H, Huang S-H, Chao W-C, Li C-L, Hsieh Y-Y, Hung W-S, Liaw D-J, Hu C-C, Lee K-R, Lai J-Y (2013a) A study on the characteristics and pervaporation performance of polyamide thin-film composite membranes with modified polyacrylonitrile as substrate for bioethanol dehydration. Polym Int 63(8):1478–1486.  https://doi.org/10.1002/pi.4649CrossRefGoogle Scholar
  24. Huang Y, Baker RW, Wijmans JG (2013b) Perfluoro–coated hydrophilic membranes with improved selectivity. Ind Eng Chem Res 52(3):1141–1149.  https://doi.org/10.1021/ie3020654CrossRefGoogle Scholar
  25. Ikegami T, Negishi H, Yanase H, Sakaki K, Okamoto M, Koura N, Sano T, Haraya K, Yanagishita H (2007) Stabilized production of highly concentrated bioethanol from fermentation broths by Zymomonas mobilis by pervaporation using silicone rubber-coated silicalite membranes. J Chem Technol Biotechnol 82(8):745–751.  https://doi.org/10.1002/jctb.1724CrossRefGoogle Scholar
  26. Jiang LY, Wang Y, Chung T-S, Qiao XY, Lai J-Y (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34(11):1135–1160.  https://doi.org/10.1016/j.progpolymsci.2009.06.001CrossRefGoogle Scholar
  27. Jin W (2016) Ethanol production by continous fermentation-pervaporation. In: Encyclopedia of membranes. p 721.  https://doi.org/10.1007/978-3-662-44324-8
  28. Kanehashi S, Nagai K (2017) Fundamentals and perspectives for pervaporation. In: Comprehensive membrane science and engineering II, vol 2. pp 191–225.  https://doi.org/10.1016/b978-0-12-409547-2.12217-6CrossRefGoogle Scholar
  29. Kim J-H, Lee K-H, Kim SY (2000) Pervaporation separation of water from ethanol through polyimide composite membranes. J Membr Sci 169(1):81–93.  https://doi.org/10.1016/S0376-7388(99)00335-XCrossRefGoogle Scholar
  30. Kiss AA, Lange J-P, Schuur B, Brilman DWF, van der Ham AGJ, Kersten SRA (2016) Separation technology—making a difference in biorefineries. Biomass Bioenergy 95:296–309.  https://doi.org/10.1016/j.biombioe.2016.05.021CrossRefGoogle Scholar
  31. Korelskiy D, Leppäjärvi T, Zhou H, Grahn M, Tanskanen J, Hedlund J (2013) High flux MFI membranes for pervaporation. J Membr Sci 427:381–389.  https://doi.org/10.1016/j.memsci.2012.10.016CrossRefGoogle Scholar
  32. Lan Y, Yan N, Wang W (2016) Application of PDMS pervaporation membranes filled with tree bark biochar for ethanol/water separation. RSC Adv 6(53):47637–47645.  https://doi.org/10.1039/c6ra06794hCrossRefGoogle Scholar
  33. Lee YM, Nam SY, Kim JH (1992) Pervaporation of water-ethanol through poly(vinyl alcohol)/chitosan blend membrane. Polym Bull 29(3):423–429.  https://doi.org/10.1007/BF00944840CrossRefGoogle Scholar
  34. Li J, Chen X, Qi B, Luo J, Zhuang X, Su Y, Wan Y (2013) Continuous acetone–butanol–ethanol (ABE) fermentation with in situ solvent recovery by silicalite-1 filled PDMS/PAN composite membrane. Energy Fuel 28(1):555–562.  https://doi.org/10.1021/ef401706kCrossRefGoogle Scholar
  35. Li Q, Cheng L, Shen J, Shi J, Chen G, Zhao J, Duan J, Liu G, Jin W (2017) Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler. Sep Purif Technol 178:105–112.  https://doi.org/10.1016/j.seppur.2017.01.024CrossRefGoogle Scholar
  36. Li J, Si X, Li X, Wang N, An Q, Ji S (2018) Preparation of acid-resistant PEI/SA composite membranes for the pervaporation dehydration of ethanol at low pH. Sep Purif Technol 192:205–212.  https://doi.org/10.1016/j.seppur.2017.09.038CrossRefGoogle Scholar
  37. Liu F, Liu L, Feng X (2005) Separation of acetone–butanol–ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep Purif Technol 42(3):273–282.  https://doi.org/10.1016/j.seppur.2004.08.005CrossRefGoogle Scholar
  38. Liu D, Chen Y, Ding F-Y, Zhao T, Wu J-L, Guo T, Ren H-F, Li B-B, Niu H-Q, Cao Z, Lin X-Q, Xie J-J, He X-J, Ying H-J (2014) Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnol Biofuels 7:5.  https://doi.org/10.1186/1754-6834-7-5CrossRefGoogle Scholar
  39. Liu Q, Li Y, Li Q, Liu G, Liu G, Jin W (2018) Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures. Sep Purif Technol.  https://doi.org/10.1016/j.seppur.2018.01.050CrossRefGoogle Scholar
  40. McGregor I, Furlong S (2017) Concurrent alcohol recovery and fermentation using pass-through distillation. Ind Biotechnol 13(3):107–112.  https://doi.org/10.1089/ind.2017.29081.imcCrossRefGoogle Scholar
  41. Mulder M (1996) Basic principles of membrane technology. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  42. Mulder MHV, Hendrickman JO, Hegeman H, Smolders CA (1983) Ethanol—water separation by pervaporation. J Membr Sci 16:269–284.  https://doi.org/10.1016/S0376-7388(00)81315-0CrossRefGoogle Scholar
  43. Munirasu S, Haija MA, Banat F (2016) Use of membrane technology for oil field and refinery produced water treatment—a review. Process Saf Environ Prot 100:183–202.  https://doi.org/10.1016/j.psep.2016.01.010CrossRefGoogle Scholar
  44. Munirasu S, Banat F, Durrani AA, Haija MA (2017) Intrinsically superhydrophobic PVDF membrane by phase inversion for membrane distillation. Desalination 417:77–86.  https://doi.org/10.1016/j.desal.2017.05.019CrossRefGoogle Scholar
  45. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14(2):578–597.  https://doi.org/10.1016/j.rser.2009.10.003CrossRefGoogle Scholar
  46. Nakao S-i, Saitoh F, Asakura T, Toda K, Kimura S (1987) Continuous ethanol extraction by pervaporation from a membrane bioreactor. J Membr Sci 30(3):273–287.  https://doi.org/10.1016/S0376-7388(00)80123-4CrossRefGoogle Scholar
  47. Niemistö J, Pasanen A, Hirvelä K, Myllykoski L, Muurinen E, Keiski RL (2013) Pilot study of bioethanol dehydration with polyvinyl alcohol membranes. J Membr Sci 447:119–127.  https://doi.org/10.1016/j.memsci.2013.06.048CrossRefGoogle Scholar
  48. Nigiz FU, Durmaz Hilmioglu N (2016) Anhydrous fuel ethanol production by a combined hydrophobic–hydrophilic pervaporation system. Energy Sources A 38(22):3348–3353.  https://doi.org/10.1080/15567036.2016.1148085CrossRefGoogle Scholar
  49. Okamoto KI, Butsuen A, Nishioka S, Tsuru S, Tanaka K, Kita H, Asakawa S (1987) Pervaporation of water-ethanol mixtures through poly-dimethylsiloxane block-copolymer membranes. Polym J 19(6):747–756.  https://doi.org/10.1295/polymj.19.747CrossRefGoogle Scholar
  50. Pal P, Kumar R, Ghosh AK (2018) Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energy Convers Manag 171:371–383.  https://doi.org/10.1016/j.enconman.2018.05.099CrossRefGoogle Scholar
  51. Peng P, Shi B, Lan Y (2010) A review of membrane materials for ethanol recovery by pervaporation. Sep Sci Technol 46(2):234–246.  https://doi.org/10.1080/01496395.2010.504681CrossRefGoogle Scholar
  52. Pera-Titus M, Bausach M, Llorens J, Cunill F (2008) Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system. Sep Purif Technol 59(2):141–150.  https://doi.org/10.1016/j.seppur.2007.05.038CrossRefGoogle Scholar
  53. Peters T, Poeth C, Benes N, Buijs H, Vercauteren F, Keurentjes J (2006) Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm. J Membr Sci 276(1–2):42–50.  https://doi.org/10.1016/j.memsci.2005.06.066CrossRefGoogle Scholar
  54. Qureshi N, Meagher MM, Huang J, Hutkins RW (2001) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187(1):93–102.  https://doi.org/10.1016/S0376-7388(00)00667-0CrossRefGoogle Scholar
  55. Ranjan A, Moholkar VS (2012) Biobutanol: science, engineering, and economics. Int J Energy Res 36(3):277–323.  https://doi.org/10.1002/er.1948CrossRefGoogle Scholar
  56. Saha K, Uma Maheswari R, Sikder J, Chakraborty S, da Silva SS, dos Santos JC (2017) Membranes as a tool to support biorefineries: applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew Sust Energ Rev 74:873–890.  https://doi.org/10.1016/j.rser.2017.03.015CrossRefGoogle Scholar
  57. Sakaguchi T, Yumoto K-i, Kwak G, Yoshikawa M, Masuda T (2002) Pervaporation of ethanol/water and benzene/cyclohexane mixtures using novel substituted polyacetylene membranes. Polym Bull 48(3):271–276.  https://doi.org/10.1007/s00289-002-0041-zCrossRefGoogle Scholar
  58. Samei M, Mohammadi T, Asadi AA (2013) Tubular composite PVA ceramic supported membrane for bio-ethanol production. Chem Eng Res Des 91(12):2703–2712.  https://doi.org/10.1016/j.cherd.2013.03.008CrossRefGoogle Scholar
  59. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295.  https://doi.org/10.1016/j.biortech.2007.11.013CrossRefGoogle Scholar
  60. Santos ELI, Rostro-Alanis M, Parra-Saldivar R, Alvarez AJ (2018) A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresour Technol 247:165–173.  https://doi.org/10.1016/j.biortech.2017.09.091CrossRefGoogle Scholar
  61. Sekulić J, Elshof AT, Blank DHA (2005) Separation mechanism in dehydration of water/organic binary liquids by pervaporation through microporous silica. J Membr Sci 254(1):267–274.  https://doi.org/10.1016/j.memsci.2005.01.013CrossRefGoogle Scholar
  62. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37(1):181–189.  https://doi.org/10.1016/j.enpol.2008.08.016CrossRefGoogle Scholar
  63. Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agron Sustain Dev 31(4):605–629.  https://doi.org/10.1007/s13593-011-0018-0CrossRefGoogle Scholar
  64. Singh A, Rangaiah GP (2017) Review of technological advances in bioethanol recovery and dehydration. Ind Eng Chem Res 56(18):5147–5163.  https://doi.org/10.1021/acs.iecr.7b00273CrossRefGoogle Scholar
  65. Sukitpaneenit P, Chung T-S (2011) Molecular design of the morphology and pore size of PVDF hollow fiber membranes for ethanol–water separation employing the modified pore-flow concept. J Membr Sci 374(1):67–82.  https://doi.org/10.1016/j.memsci.2011.03.016CrossRefGoogle Scholar
  66. Sukitpaneenit P, Chung T-S (2014) Fabrication and use of hollow fiber thin film composite membranes for ethanol dehydration. J Membr Sci 450:124–137.  https://doi.org/10.1016/j.memsci.2013.08.047CrossRefGoogle Scholar
  67. Sun W, Jia W, Xia C, Zhang W, Ren Z (2017) Study of in situ ethanol recovery via vapor permeation from fermentation. J Membr Sci 530:192–200.  https://doi.org/10.1016/j.memsci.2017.02.034CrossRefGoogle Scholar
  68. te Hennepe HJC, Bargeman D, Mulder MHV, Smolders CA (1987) Zeolite-filled silicone rubber membranes: part 1. Membrane preparation and pervaporation results. J Membr Sci 35(1):39–55.  https://doi.org/10.1016/S0376-7388(00)80921-7CrossRefGoogle Scholar
  69. Ueno K, Negishi H, Okuno T, Saito T, Tawarayama H, Ishikawa S, Miyamoto M, Uemiya S, Sawada Y, Oumi Y (2017) High-performance silicalite-1 membranes on porous tubular silica supports for separation of ethanol/water mixtures. Sep Purif Technol 187:343–354.  https://doi.org/10.1016/j.seppur.2017.06.071CrossRefGoogle Scholar
  70. Ullah K, Ahmad M, Sofia, Sharma VK, Lu P, Harvey A, Zafar M, Sultana S (2015) Assessing the potential of algal biomass opportunities for bioenergy industry—a review. Fuel 143:414–423.  https://doi.org/10.1016/j.fuel.2014.10.064CrossRefGoogle Scholar
  71. Van Baelen D, Van der Bruggen B, Van den Dungen K, Degreve J, Vandecasteele C (2005) Pervaporation of water–alcohol mixtures and acetic acid–water mixtures. Chem Eng Sci 60(6):1583–1590.  https://doi.org/10.1016/j.ces.2004.10.030CrossRefGoogle Scholar
  72. Van Hecke W, Vandezande P, Claes S, Vangeel S, Beckers H, Diels L, De Wever H (2012) Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour Technol 111:368–377.  https://doi.org/10.1016/j.biortech.2012.02.043CrossRefGoogle Scholar
  73. Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80(6):603–629.  https://doi.org/10.1002/jctb.1265CrossRefGoogle Scholar
  74. Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2(6):553–588.  https://doi.org/10.1002/bbb.108CrossRefGoogle Scholar
  75. Vane LM, Alvarez FR (2013) Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process simulations. J Chem Technol Biotechnol 88(8):1436–1447.  https://doi.org/10.1002/jctb.4087CrossRefGoogle Scholar
  76. Vane LM, Alvarez FR, Huangb Y, Baker RW (2010) Experimental validation of hybrid distillation-vapor permeation process for energy efficient ethanol–water separation. J Chem Technol Biotechnol 85:502–511.  https://doi.org/10.1002/jctb.2318CrossRefGoogle Scholar
  77. Wang Y, Goh SH, Chung TS, Na P (2009) Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols. J Membr Sci 326(1):222–233.  https://doi.org/10.1016/j.memsci.2008.10.005CrossRefGoogle Scholar
  78. Wei P, Cheng L-H, Zhang L, Xu X-H, Chen H-l, Gao C-j (2014) A review of membrane technology for bioethanol production. Renew Sust Energ Rev 30:388–400.  https://doi.org/10.1016/j.rser.2013.10.017CrossRefGoogle Scholar
  79. Wu H, Chen XP, Liu GP, Jiang M, Guo T, Jin WQ, Wei P, Zhu DW (2012) Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess Biosyst Eng 35(7):1057–1065.  https://doi.org/10.1007/s00449-012-0721-5CrossRefGoogle Scholar
  80. Wu Z, Zhang C, Peng L, Wang X, Kong Q, Gu X (2018) Enhanced stability of MFI zeolite membranes for separation of ethanol/water by eliminating surface Si-OH groups. ACS Appl Mater Interfaces 10(4):3175–3180.  https://doi.org/10.1021/acsami.7b17191CrossRefGoogle Scholar
  81. Xiangli F, Chen Y, Jin W, Xu N (2007) Polydimethylsiloxane (PDMS)-ceramic composite membrane with high flux for pervaporation of ethanol−water mixtures. Ind Eng Chem Res 46:2224–2230CrossRefGoogle Scholar
  82. Xue C, Du G-Q, Sun J-X, Chen L-J, Gao S-S, Yu M-L, Yang S-T, Bai F-W (2014) Characterization of gas stripping and its integration with acetone–butanol–ethanol fermentation for high-efficient butanol production and recovery. Biochem Eng J 83:55–61.  https://doi.org/10.1016/j.bej.2013.12.003CrossRefGoogle Scholar
  83. Xue C, Wang Z-X, Du G-Q, Fan L-H, Mu Y, Ren J-G, Bai F-W (2016) Integration of ethanol removal using carbon nanotube (CNT)-mixed membrane and ethanol fermentation by self-flocculating yeast for antifouling ethanol recovery. Process Biochem 51(9):1140–1146.  https://doi.org/10.1016/j.procbio.2016.05.030CrossRefGoogle Scholar
  84. Yen HW, Chen ZH, Yang IK (2012) Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresour Technol 109:105–109.  https://doi.org/10.1016/j.biortech.2012.01.017CrossRefGoogle Scholar
  85. Yi S, Wan Y (2017) Separation performance of novel vinyltriethoxysilane (VTES)-g-silicalite-1/PDMS/PAN thin-film composite membrane in the recovery of bioethanol from fermentation broths by pervaporation. J Membr Sci 524:132–140.  https://doi.org/10.1016/j.memsci.2016.11.037CrossRefGoogle Scholar
  86. Zhang H, Wang Y (2016) Poly(vinyl alcohol)/ZIF-8-NH2mixed matrix membranes for ethanol dehydration via pervaporation. AIChE Journal 62(5):1728–1739.  https://doi.org/10.1002/aic.15140CrossRefGoogle Scholar
  87. Zhao XQ, Bai FW (2009) Yeast flocculation: new story in fuel ethanol production. Biotechnol Adv 27(6):849–856.  https://doi.org/10.1016/j.biotechadv.2009.06.006CrossRefGoogle Scholar
  88. Zheng P-Y, Ye C-C, Wang X-S, Chen K-F, An Q-F, Lee K-R, Gao C-J (2016) Poly(sodium vinylsulfonate)/chitosan membranes with sulfonate ionic cross-linking and free sulfate groups: preparation and application in alcohol dehydration. J Membr Sci 510:220–228.  https://doi.org/10.1016/j.memsci.2016.02.060CrossRefGoogle Scholar
  89. Zhuang X, Chen X, Su Y, Luo J, Feng S, Zhou H, Wan Y (2016) Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: preparation, characterization and modeling. J Membr Sci 499:386–395.  https://doi.org/10.1016/j.memsci.2015.10.018CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKhalifa UniversityAbu DhabiUAE

Personalised recommendations