Biorefinery pp 657-668 | Cite as

Considerations for Producing Bioenergy from Halophyte Feedstocks

  • J. Jed Brown


With the growing criticisms of using arable land and edible crops to produce first-generation biofuels instead of food for humans, there is an increasing interest in using marginal lands and water sources to grow biofuel feedstocks to produce second-generation biofuels. One possible way forward would be to use seawater or other high-salinity water to grow salt-tolerant plants (halophytes). Halophytes have the potential to grow and produce lignocellulosic biomass and oilseeds on high-salinity water such as seawater. No halophyte bioenergy crops have been domesticated to date. However many of the species that have been investigated have shown good characteristics, both in the composition and yield of the straw biomass and in the oilseeds to produce good-quality lignocellulosic ethanol, biodiesel, or other forms of bioenergy and compare favorably to conventional biofuel feedstocks. Here the potential of using halophytes as biofuel feedstocks is reviewed, and the various considerations that would need to be taken into account before embarking on any commercial effort to produce biofuels from halophytes are described.


Halophyte Bioenergy Avicennia marina Salicornia bigelovii Seawater Biofuels 


  1. Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35(5):1818–1822CrossRefGoogle Scholar
  2. Abideen Z, Ansari R, Gul B, Khan MA (2012) The place of halophytes in Pakistan’s biofuel industry. Biofuels 3(2):211–220CrossRefGoogle Scholar
  3. Abideen Z, Qasim M, Rizvi RF, Gul B, Ansari R, Khan MA (2015) Oilseed halophytes: a potential source of biodiesel using saline degraded lands. Biofuels 6(5–6):241–248CrossRefGoogle Scholar
  4. Ali A, Iqbal N, Ali F, Afzal B (2012) Alternanthera bettzickiana (Regel) G. Nicholson, a potential halophytic ornamental plant: growth and physiological adaptations. Flora Morphol Distrib Funct Ecol Plants 207(4):318–321CrossRefGoogle Scholar
  5. Almardeai S, Bastidas-Oyanedel JR, Schmidt JE (2017) Avicennia marina biomass characterization towards bioproducts. Emirates J Food Agric 29(9):710–715CrossRefGoogle Scholar
  6. Anwar F, Bhanger MI, Nasir MKA, Ismail S (2002) Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. J Agric Food Chem 50(15):4210–4214CrossRefGoogle Scholar
  7. Ayala F, O’Leary JW (1995) Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. Int J Plant Sci 156(2):197–205CrossRefGoogle Scholar
  8. Bailey-Serres J, Colmer TD (2014) Plant tolerance of flooding stress–recent advances. Plant Cell Environ 37(10):2211–2215Google Scholar
  9. Bailis R, Yu E (2012) Environmental and social implications of integrated seawater agriculture systems producing Salicornia bigelovii for biofuel. Biofuels 3(5):555–574CrossRefGoogle Scholar
  10. Bandaranayake WM (1998) Traditional and medicinal uses of mangroves. Mangrove Salt Marshes 2(3):133–148CrossRefGoogle Scholar
  11. Bañuelos JA, Velázquez-Hernández I, Guerra-Balcázar M, Arjona N (2018) Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source. Renew Energy 123:125–134CrossRefGoogle Scholar
  12. Berntsson T, Sandén BA, Olsson L, Åsblad A (2012) What is a biorefinery?Google Scholar
  13. Brown JJ, Glenn EP (1999) Reuse of highly saline aquaculture effluent to irrigate a potential forage halophyte, Suaeda esteroa. Aquac Eng 20:91–111. Scholar
  14. Brown JJ, Cybulska I, Chaturvedi T, Thomsen MH (2014a) Halophytes for the production of liquid biofuels. In: Sabkha ecosystems. Springer, Dordrecht, pp 67–72CrossRefGoogle Scholar
  15. Brown JJ, Glenn EP, Smith SE (2014b) Feasibility of halophyte domestication for high-salinity agriculture. In: Sabkha ecosystems. Springer, Dordrecht, pp 73–80CrossRefGoogle Scholar
  16. Brown JJ, Das P, Al-Saidi M (2018) Sustainable agriculture in the Arabian/Persian Gulf region utilizing marginal water resources: making the best of a bad situation. Sustainability 10(5):1–16CrossRefGoogle Scholar
  17. Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234CrossRefGoogle Scholar
  18. Chakravorty U, Hubert MH, Nøstbakken L (2009) Fuel versus food. Ann Rev Resour Econ 1(1):645–663CrossRefGoogle Scholar
  19. Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206(2):557–570CrossRefGoogle Scholar
  20. Cybulska I, Brudecki G, Alassali A, Thomsen M, Brown JJ (2014a) Phytochemical composition of some common coastal halophytes of the United Arab Emirates. Emirates J Food Agric 26(12):1046CrossRefGoogle Scholar
  21. Cybulska I, Chaturvedi T, Alassali A, Brudecki GP, Brown JJ, Sgouridis S, Thomsen MH (2014b) Characterization of the chemical composition of the halophyte Salicornia bigelovii under cultivation. Energy Fuel 28(6):3873–3883CrossRefGoogle Scholar
  22. Cybulska I, Chaturvedi T, Brudecki GP, Kádár Z, Meyer AS, Baldwin RM, Thomsen MH (2014c) Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. Bioresour Technol 153:165–172CrossRefGoogle Scholar
  23. Debez A, Belghith I, Friesen J, Montzka C, Elleuche S (2017) Facing the challenge of sustainable bioenergy production: could halophytes be part of the solution? J Biol Eng 11(1):27CrossRefGoogle Scholar
  24. El Shaer HM (2010) Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Rumin Res 91(1):3–12CrossRefGoogle Scholar
  25. FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)—managing systems at risk. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  26. Flowers TJ (2014) eHALOPH halophytes database. [WWW document]. Accessed 1 Apr 2018
  27. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963CrossRefGoogle Scholar
  28. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61(3):313–337CrossRefGoogle Scholar
  29. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37(7):604–612CrossRefGoogle Scholar
  30. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930CrossRefGoogle Scholar
  31. Glenn EP, O’Leary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251(4997):1065–1067CrossRefGoogle Scholar
  32. Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R, Pearlstein S, Soliz D, Nelson SG, Felger RS (2013) Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environ Exp Bot 92:110–121. Scholar
  33. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10CrossRefGoogle Scholar
  34. He Y, Fang Z, Zhang J, Li X, Bao J (2014) De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation. Bioresour Technol 169:552–558CrossRefGoogle Scholar
  35. Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85(3):237CrossRefGoogle Scholar
  36. John VC, Coles SL, Abozed AI (1990) Seasonal cycles of temperature, salinity and water masses of the western Arabian Gulf. Oceanol Acta 13(3):273–281Google Scholar
  37. Jung SJ, Kim SH, Chung IM (2015) Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 83:322–327CrossRefGoogle Scholar
  38. Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42CrossRefGoogle Scholar
  39. Kinder JD, Rahmes T (2009) Evaluation of bio-derived synthetic paraffinic kerosene (bio-SPK). The Boeing Company Sustainable Biofuels Research & Technology Program.
  40. Lonard RI, Judd FW, Stalter R (2011) The biological flora of coastal dunes and wetlands: Salicornia bigelovii J. Torrey. J Coast Res 28(3):719–725CrossRefGoogle Scholar
  41. Manousaki E, Kalogerakis N (2010) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50(2):656–660CrossRefGoogle Scholar
  42. Mariscal R, Maireles-Torres P, Ojeda M, Sadaba I, Lopez Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189CrossRefGoogle Scholar
  43. Marriott L, Pourazadi E (2017) Industrialisation of saline cultivation for second-generation biofuels: progress and challenges. Environ Tech Rev 6(1):15–25CrossRefGoogle Scholar
  44. Martin DL, Dorn TW, Melvin SR, Corr AJ, Kranz WL (2011) Evaluating energy use for pumping irrigation water. In: Proceedings of the 23rd annual central plains irrigation conference, pp 22–23Google Scholar
  45. Masters DG, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosyst Environ 119(3–4):234–248CrossRefGoogle Scholar
  46. Moser BR, Dien BS, Seliskar DM, Gallagher JL (2013) Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol. Renew Energy 50:833–839CrossRefGoogle Scholar
  47. NSW Department of Primary Industries (2017) Salinity tolerance in irrigated crops Primefact 1345, 2nd edn. Agriculture NSW Water Unit.
  48. Omstedt A, Axell LB (1998) Modeling the seasonal, interannual, and long-term variations of salinity and temperature in the Baltic proper. Tellus A Dyn Meteorol Oceanogr 50(5):637–652CrossRefGoogle Scholar
  49. Qasim M, Gulzar S, Shinwari ZK, Aziz I, Khan MA (2010) Traditional ethnobotanical uses of halophytes from Hub, Balochistan. Pak J Bot 42(3):1543–1551Google Scholar
  50. Rahmes T, Kinder J, Crenfeldt G, LeDuc G, Abe Y, McCall M, Andac M (2009) Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results. In: 9th AIAA aviation technology, integration, and operations conference (ATIO) and aircraft noise and emissions reduction symposium (ANERS)Google Scholar
  51. Ríos-Durán MG, Valencia IR, Ross LG, Martinez-Palacios CA (2013) Nutritional evaluation of autoclaved Salicornia bigelovii Torr. seed meal supplemented with varying levels of cholesterol on growth, nutrient utilization and survival of the Nile tilapia (Oreochromis niloticus). Aquac Int 21(6):1355–1371CrossRefGoogle Scholar
  52. Shannon MC, Grieve CM (1998) Tolerance of vegetable crops to salinity. Sci Hortic (Amsterdam) 78:5–38CrossRefGoogle Scholar
  53. Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK (2016) Halophytes as bioenergy crops. Front Plant Sci 7:1372Google Scholar
  54. Shpigel M, Ben-Ezra D, Shauli L, Sagi M, Ventura Y, Samocha T, Lee JJ (2013) Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquaculture 412–413:52–63. Scholar
  55. Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ (2017) Progress in biofuel production from gasification. Prog Energy Combust Sci 61:189–248CrossRefGoogle Scholar
  56. Speight JG (ed) (2011) The biofuels handbook. Royal Society of Chemistry, LondonGoogle Scholar
  57. Swingle RS, Glenn EP, Squires V (1996) Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim Feed Sci Technol 63(1–4):137–148CrossRefGoogle Scholar
  58. Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for salicornia and sarcocornia. Environ Exp Bot 92:144–153. Scholar
  59. Ventura Y, Myrzabayeva M, Alikulov Z, Cohen S, Shemer Z, Sagi M (2013) The importance of iron supply during repetitive harvesting of Aster tripolium. Funct Plant Biol 40(9):968–976CrossRefGoogle Scholar
  60. Warshay B, Brown JJ, Sgouridis S (2017) Life cycle assessment of integrated seawater agriculture in the Arabian (Persian) Gulf as a potential food and aviation biofuel resource. Int J Life Cycle Assess 22(7):1017–1032CrossRefGoogle Scholar
  61. Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophytes as source of edible oil. J Arid Environ 68(2):315–321CrossRefGoogle Scholar
  62. Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4(8):2669–2681CrossRefGoogle Scholar
  63. Williams PT, Horne PA (1994) The role of metal salts in the pyrolysis of biomass. Renew Energy 4(1):1–13CrossRefGoogle Scholar
  64. Xi JB, Zhang FS, Mao DR, Yan P (2003) The utilization of halophytes for traditional medicine in Xin jiang. Rev China Agric Sci Technol 5:43–48Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Jed Brown
    • 1
  1. 1.Center for Sustainable Development, College of Arts and SciencesQatar UniversityDohaQatar

Personalised recommendations