Advertisement

Biorefinery pp 511-534 | Cite as

Bioelectrochemical Systems for the Valorization of Organic Residues

  • Roman Moscoviz
  • Elie Desmond-Le Quéméner
  • Eric Trably
  • Nicolas BernetEmail author
Chapter

Abstract

Bioelectrochemical systems (BES) that can be involved in the valorization of organic residues use microorganisms able to exchange electrons with an electrode. In the case of microbial fuel cells (MFC), microbial oxidation of organic substrates at the anode generates energy as electric current. In a microbial electrolysis cell, electric energy is provided so that electrons generated by microbial oxidation of organic matter at the anode allow hydrogen production at the cathode. Electrodes can also be used to control fermentation reactions in the electro-fermentation process. Other applications include the production of methane or organic molecules by microbiological carbon dioxide reduction at the cathode, i.e. microbial electrosynthesis. It is also possible to use these BES to recover nutrient from specific effluents.

Keywords

Bioelectrochemical systems Microbial fuel cell Microbial electrolysis cell Electro-fermentation BES MFC MEC Organic residues 

References

  1. Arends JBA, Verstraete W (2012) 100 years of microbial electricity production: three concepts for the future. Microb Biotechnol 5(3):333–346CrossRefGoogle Scholar
  2. Batlle-Vilanova, P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Baneras L, Balaguer MD, Colprim J (2014) Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells, Int J Hydrogen Energ 39:1297–1305.CrossRefGoogle Scholar
  3. Blasco-Gomez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S (2017) On the edge of research and technological application: a critical review of electromethanogenesis. Int J Mol Sci 18(4):874.  https://doi.org/10.3390/ijms18040874CrossRefGoogle Scholar
  4. Bouchez T, Bridier A, Le Quéméner E (2017) Method and device for controlling the activity of a bioelectrochemical system comprising both a bioanode and a biocathode. US2017218530A1Google Scholar
  5. Butti SK, Velvizhi G, Sulonen MLK, Haavisto JM, Koroglu EO, Cetinkaya AY, Singh S, Arya D, Modestra JA, Krishna KV, Verma A, Ozkaya B, Lakaniemi AM, Puhakka JA, Mohan SV (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sust Energ Rev 53:462–476CrossRefGoogle Scholar
  6. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42(9):3401–3406CrossRefGoogle Scholar
  7. Call DF, Merrill MD, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ Sci Technol 43:2179–2183CrossRefGoogle Scholar
  8. Cao XX, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152CrossRefGoogle Scholar
  9. Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525CrossRefGoogle Scholar
  10. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104(47):18871–18873CrossRefGoogle Scholar
  11. Cheng SA, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102(3):3571–3574CrossRefGoogle Scholar
  12. Cheng SA, Xing DF, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958CrossRefGoogle Scholar
  13. Choi O, Um Y, Sang B-I (2012) Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng 109:2494–2502CrossRefGoogle Scholar
  14. Choi O, Kim T, Woo HM, Um Y (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4:6961CrossRefGoogle Scholar
  15. Clauwaert P, Toledo R, Van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57(4):575–579CrossRefGoogle Scholar
  16. Cord-Ruwisch R, Law Y, Cheng KY (2011) Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Bioresour Technol 102(20):9691–9696CrossRefGoogle Scholar
  17. Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrog Energy 35(17):8855–8861CrossRefGoogle Scholar
  18. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu GL, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063CrossRefGoogle Scholar
  19. Daud SM, Kim BH, Ghasemi M, Daud WRW (2015) Separators used in microbial electrochemical technologies: current status and future prospects. Bioresour Technol 195:170–179CrossRefGoogle Scholar
  20. De Vrieze J, Gildemyn S, Arends JBA, Vanwonterghem I, Verbeken K, Boon N, Verstraete W, Tyson GW, Hennebel T, Rabaey K (2014) Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res 54:211–221CrossRefGoogle Scholar
  21. Dennis PG, Harnisch F, Yeoh YK, Tyson GW, Rabaey K (2013) Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol 79(13):4008–4014CrossRefGoogle Scholar
  22. Deutzmann JS, Spormann AM (2017) Enhanced microbial electrosynthesis by using defined co-cultures. ISME J 11:704–714CrossRefGoogle Scholar
  23. Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56:2771–2776Google Scholar
  24. Escapa A, Gomez X, Tartakovsky B, Moran A (2012) Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study. Int J Hydrog Energy 37:18641–18653CrossRefGoogle Scholar
  25. Fan YZ, Han SK, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5(8):8273–8280CrossRefGoogle Scholar
  26. Feng YJ, He WH, Liu J, Wang X, Qu YP, Ren NQ (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 156:132–138CrossRefGoogle Scholar
  27. Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1:5 e00190–5 e00110CrossRefGoogle Scholar
  28. Foley J, de Haas D, Hartley K, Lant P (2010) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44(5):1654–1666CrossRefGoogle Scholar
  29. Gallardo R, Acevedo A, Quintero J, Paredes I, Conejeros R, Aroca G (2016) In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply. Bioprocess Biosyst Eng 39(2):295–305CrossRefGoogle Scholar
  30. Geelhoed JS, Hamelers HVM, Stams AJM (2010) Electricity-mediated biological hydrogen production. Curr Opin Microbiol 13(3):307–315CrossRefGoogle Scholar
  31. Harrington TD, Mohamed A, Tran VN, Biria S, Gargouri M, Park J-J, Gang DR, Beyenal H (2015a) Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis. Bioresour Technol 195:57–65CrossRefGoogle Scholar
  32. Harrington TD, Tran VN, Mohamed A, Renslow R, Biria S, Orfe L, Call DR, Beyenal H (2015b) The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresour Technol 192:689–695CrossRefGoogle Scholar
  33. Heidrich ES, Dolfing J, Scott K, Edwards SR, Jones C, Curtis TP (2013) Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl Microbiol Biotechnol 97:6979–6989CrossRefGoogle Scholar
  34. Hiegemann H, Herzer D, Nettmann E, Lübken M, Schulte P, Schmelz K-G, Gredigk-Hoffmann S, Wichern M (2016) An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol 218:115–122CrossRefGoogle Scholar
  35. Hiegemann H, Lübken M, Schulte P, Schmelz K-G, Gredigk-Hoffmann S, Wichern M (2018) Inhibition of microbial fuel cell operation for municipal wastewater treatment by impact loads of free ammonia in bench- and 45L-scale. Sci Total Environ 624:34–39CrossRefGoogle Scholar
  36. Hu HQ, Fan YZ, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178CrossRefGoogle Scholar
  37. Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy 34:8535–8542CrossRefGoogle Scholar
  38. Jeremiasse AW, Hamelers EVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43CrossRefGoogle Scholar
  39. Jeremiasse AW, Hamelers HVM, Croese E, Buisman CJN (2012) Acetate enhances startup of a H2-producing microbial biocathode. Biotechnol Bioeng 109:657–664CrossRefGoogle Scholar
  40. Jourdin L, Raes SMT, Buisman CJN, Strik DPBTB (2018) Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res 6:7.  https://doi.org/10.3389/fenrg.2018.00007CrossRefGoogle Scholar
  41. Kim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10:123–128CrossRefGoogle Scholar
  42. Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295CrossRefGoogle Scholar
  43. Kokko M, Epple S, Gescher J, Kerzenmacher S (2018) Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. Bioresour Technol 258:376–389CrossRefGoogle Scholar
  44. Kracke F, Krömer JO (2014) Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15(1):410CrossRefGoogle Scholar
  45. Kracke F, Virdis B, Bernhardt PV, Rabaey K, Krömer JO (2016) Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply. Biotechnol Biofuels 9(1):249CrossRefGoogle Scholar
  46. Kundu A, Sahu JN, Redzwan G, Hashim MA (2013) An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrog Energy 38(4):1745–1757CrossRefGoogle Scholar
  47. Kuntke P, Geleji M, Bruning H, Zeeman G, Hamelers HVM, Buisman CJN (2011) Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresour Technol 102(6):4376–4382CrossRefGoogle Scholar
  48. Kuntke P, Sleutels T, Saakes M, Buisman CJN (2014) Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell. Int J Hydrog Energy 39(10):4771–4778CrossRefGoogle Scholar
  49. Lalaurette E, Thammannagowda S, Mohagheghi A, Maness PC, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210CrossRefGoogle Scholar
  50. Ledezma P, Kuntke P, Buisman CJN, Keller J, Freguia S (2015) Source-separated urine opens golden opportunities for microbial electrochemical technologies. Trends Biotechnol 33(4):214–220CrossRefGoogle Scholar
  51. Ledezma P, Jermakka J, Keller J, Freguia S (2017) Recovering nitrogen as a solid without chemical dosing: bio-electroconcentration for recovery of nutrients from urine. Environ Sci Technol Lett 4(3):119–124CrossRefGoogle Scholar
  52. Lee HS, Rittmann BE (2010) Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. Int J Hydrog Energy 35:920–927CrossRefGoogle Scholar
  53. Lee HS, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271CrossRefGoogle Scholar
  54. Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X (2018) One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res 141:1–8CrossRefGoogle Scholar
  55. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320CrossRefGoogle Scholar
  56. Liu Y, Yu P, Song X, Qu Y (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrog Energy 33:2927–2933CrossRefGoogle Scholar
  57. Liu H, Hu H, Chignell J, YanZhen F, Fan Y (2010) Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels 1:129–142CrossRefGoogle Scholar
  58. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671CrossRefGoogle Scholar
  59. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690CrossRefGoogle Scholar
  60. Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192CrossRefGoogle Scholar
  61. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels T, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640CrossRefGoogle Scholar
  62. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571CrossRefGoogle Scholar
  63. Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35CrossRefGoogle Scholar
  64. Lovley DR (2012) Electromicrobiology. In: Gottesman S, Harwood CS, Schneewind O (eds) Annual review of microbiology, vol 66. Annual Reviews, Palo Alto, pp 391–409Google Scholar
  65. Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A 101(36):13318–13323CrossRefGoogle Scholar
  66. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78(23):8412–8420CrossRefGoogle Scholar
  67. Maurer M, Pronk W, Larsen TA (2006) Treatment processes for source-separated urine. Water Res 40(17):3151–3166CrossRefGoogle Scholar
  68. Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34:856–865CrossRefGoogle Scholar
  69. Moscoviz R, Trably E, Bernet N (2017) Electro-fermentation triggering population selection in mixed-culture glycerol fermentation. Microb Biotechnol 11(1):74–83CrossRefGoogle Scholar
  70. Nealson KH, Rowe AR (2016) Electromicrobiology: realities, grand challenges, goals and predictions. Microb Biotechnol 9(5):595–600CrossRefGoogle Scholar
  71. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110CrossRefGoogle Scholar
  72. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou JH, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886CrossRefGoogle Scholar
  73. Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723CrossRefGoogle Scholar
  74. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543CrossRefGoogle Scholar
  75. Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 27(3):168–178CrossRefGoogle Scholar
  76. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84(571):260–276CrossRefGoogle Scholar
  77. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716CrossRefGoogle Scholar
  78. Rodriguez Arredondo M, Kuntke P, Jeremiasse AW, Sleutels THJA, Buisman CJN, ter Heijne A (2015) Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ Sci: Water Res Technol 1(1):22–33Google Scholar
  79. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640CrossRefGoogle Scholar
  80. Rozendal RA, Hamelers HVM, Molenkmp RJ, Buisman JN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994CrossRefGoogle Scholar
  81. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634CrossRefGoogle Scholar
  82. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244CrossRefGoogle Scholar
  83. Schievano A, Pepé Sciarria T, Vanbroekhoven K et al (2016) Electro-fermentation—merging electrochemistry with fermentation in industrial applications. Trends Biotechnol 34:866–878CrossRefGoogle Scholar
  84. Schuppert B, Schink B, Trösch W (1992) Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system. Appl Microbiol Biotechnol 37:549–553CrossRefGoogle Scholar
  85. Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278CrossRefGoogle Scholar
  86. Sevda S, Yuan H, He Z, Abu-Reesh IM (2015) Microbial desalination cells as a versatile technology: functions, optimization and prospective. Desalination 371:9–17CrossRefGoogle Scholar
  87. Speers AM, Young JM, Reguera G (2014) Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environ Sci Technol 48:6350–6358CrossRefGoogle Scholar
  88. Tartakovsky B, Manuel MF, Wang H, Guiot SR (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrog Energy 34(2):672–677CrossRefGoogle Scholar
  89. Trapero JR, Horcajada L, Linares JJ, Lobato J (2017) Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl Energy 185:698–707CrossRefGoogle Scholar
  90. Villano M, De Bonis L, Rossetti S, Aulenta F, Majone M (2011) Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresour Technol 102:3193–3199CrossRefGoogle Scholar
  91. Villano M, Scardala S, Aulenta F, Majone M (2013) Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour Technol 130:366–371CrossRefGoogle Scholar
  92. Villano M, Paiano P, Palma E, Miccheli A, Majone M (2017) Electrochemically driven fermentation of organic substrates with undefined mixed microbial cultures. ChemSusChem 10(15):3091–3097CrossRefGoogle Scholar
  93. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42(12):3013–3024CrossRefGoogle Scholar
  94. Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488CrossRefGoogle Scholar
  95. Yu ZS, Leng XY, Zhao S, Ji J, Zhou TY, Khan A, Kakde A, Liu P, Li XK (2018) A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresour Technol 255:340–348CrossRefGoogle Scholar
  96. Zeppilli M, Villano M, Aulenta F, Lampis S, Vallini G, Majone M (2015) Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell. Environ Sci Pollut Res 22(10):7349–7360CrossRefGoogle Scholar
  97. Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013) In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol 136:316–321CrossRefGoogle Scholar
  98. Zhou MH, Chi ML, Luo JM, He HH, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435CrossRefGoogle Scholar
  99. Zhou M, Chen J, Freguia S et al (2013) Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ Sci Technol 47:11199–11205CrossRefGoogle Scholar
  100. Zhou M, Freguia S, Dennis PG et al (2015) Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system: bioelectrocatalytic activity in glycerol-fed BESs. Microb Biotechnol 8:483–489CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roman Moscoviz
    • 1
  • Elie Desmond-Le Quéméner
    • 1
  • Eric Trably
    • 1
  • Nicolas Bernet
    • 1
    Email author
  1. 1.LBE, Univ Montpellier, INRANarbonneFrance

Personalised recommendations