Advertisement

Biorefinery pp 491-509 | Cite as

Use of Syngas for the Production of Organic Molecules by Fermentation

  • Raymond Jianxiong ZengEmail author
  • Fang ZhangEmail author
Chapter

Abstract

Exploring environmentally friendly ways of converting biodegradable organic materials such as biomass and activated sludge to biofuels and chemicals have drawn worldwide interest. Syngas fermentation provides a new platform for organic waste utilization. In this study, basic metabolic pathways—the Wood–Ljungdahl pathway and reverse β-oxidation reaction and thermodynamics—are summarized in Sect. 2. The operating conditions—pH, temperature, CO and H2 partial pressure, syngas impurities, and reactor configuration that could change the microbial community or the metabolic pathway—are discussed in Sect. 3. Lastly, coupling syngas fermentation with other technologies, such as syngas pretreatment and membrane technology, was necessary for its application. Such application is summarized in the last section. Other promising technologies, such as polyhydroxyalkanoate production and microbial fuel cells, are also reviewed. This chapter reviews recent advances in syngas fermentation to promote the development and application of syngas fermentation worldwide.

Keywords

Syngas fermentation Metabolic pathways pH Temperature Impurity Coupling technologies Biorefinery 

Notes

Acknowledgments

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (51478447 and 51408530), Foundation of Hebei Education Department (BJ2017014), and the Program for Changjiang Scholars and Innovative Research Team in University.

References

  1. Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Biorefin 5(1):93–114CrossRefGoogle Scholar
  2. Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127CrossRefGoogle Scholar
  3. Ahmed A, Lewis RS (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97(5):1080–1086CrossRefGoogle Scholar
  4. Alves JI, Stams AJM, Plugge CM, Madalena Alves M, Sousa DZ (2013) Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge. FEMS Microbiol Ecol 86(3):590–597CrossRefGoogle Scholar
  5. Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, Strik DPBTB, Grootscholten TIM, Buisman CJN, Hamelers HVM (2016) Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol 50(6):2796–2810CrossRefGoogle Scholar
  6. Ayala DF, Ferre V, Judd SJ (2011) Membrane life estimation in full-scale immersed membrane bioreactors. J Membr Sci 378(1):95–100CrossRefGoogle Scholar
  7. Basen M, Müller V (2017) “Hot” acetogenesis. Extremophiles 21(1):15–26CrossRefGoogle Scholar
  8. Bastidas-Oyanedel J-R, Aceves-Lara C-A, Ruiz-Filippi G, Steyer J-P (2008) Thermodynamic analysis of energy transfer in acidogenic cultures. Eng Life Sci 8(5):487–498CrossRefGoogle Scholar
  9. Benalcázar EA, Deynoot BG, Noorman H, Osseweijer P, Posada JA (2017) Production of bulk chemicals from lignocellulosic biomass via thermochemical conversion and syngas fermentation: a comparative techno-economic and environmental assessment of different site-specific supply chain configurations. Biofuels Bioprod Biorefin 11(5):861–886CrossRefGoogle Scholar
  10. Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34(13–14):1639–1651CrossRefGoogle Scholar
  11. Bertsch J, Müller V (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81(17):5949–5956CrossRefGoogle Scholar
  12. Castro-Dominguez B, Mardilovich IP, Ma R, Kazantzis NK, Dixon AG, Ma YH (2017) Performance of a pilot-scale multitube membrane module under coal-derived syngas for hydrogen production and separation. J Membr Sci 523(suppl C):515–523CrossRefGoogle Scholar
  13. Dai K, Wen J-L, Zhang F, Zeng RJ (2017) Valuable biochemical production in mixed culture fermentation: fundamentals and process coupling. Appl Microbiol Biotechnol 101(17):6575–6586CrossRefGoogle Scholar
  14. Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86(5):587–594CrossRefGoogle Scholar
  15. Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Bioresour Technol 209:56–65CrossRefGoogle Scholar
  16. Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1275CrossRefGoogle Scholar
  17. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125(1):100–128CrossRefGoogle Scholar
  18. Drews A (2010) Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. J Membr Sci 363(1–2):1–28CrossRefGoogle Scholar
  19. Esquivel-Elizondo S, Delgado AG, Rittmann BE, Krajmalnik-Brown R (2017) The effects of CO2 and H2 on CO metabolism by pure and mixed microbial cultures. Biotechnol Biofuels 10(1):220CrossRefGoogle Scholar
  20. Fabbri D, Torri C (2016) Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr Opin Biotechnol 38:167–173CrossRefGoogle Scholar
  21. Fernández-Naveira Á, Veiga MC, Kennes C (2017) H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J Chem Technol Biotechnol 92(4):712–731CrossRefGoogle Scholar
  22. Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44(9):3629–3637CrossRefGoogle Scholar
  23. Ganigué R, Sánchez-Paredes P, Bañeras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702CrossRefGoogle Scholar
  24. Grootscholten TIM, Strik DPBTB, Steinbusch KJJ, Buisman CJN, Hamelers HVM (2014) Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Appl Energy 116:223–229CrossRefGoogle Scholar
  25. Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18(3):200–206CrossRefGoogle Scholar
  26. Hussain A, Mehta P, Raghavan V, Wang H, Guiot SR, Tartakovsky B (2012) The performance of a thermophilic microbial fuel cell fed with synthesis gas. Enzyme Microb Technol 51(3):163–170CrossRefGoogle Scholar
  27. Jiang L, Wang J, Liang S, Cai J, Xu Z, Cen P, Yang S, Li S (2011) Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnol Bioeng 108(1):31–40CrossRefGoogle Scholar
  28. Jing Y, Campanaro S, Kougias P, Treu L, Angelidaki I, Zhang S, Luo G (2017) Anaerobic granular sludge for simultaneous biomethanation of synthetic wastewater and CO with focus on the identification of CO-converting microorganisms. Water Res 126(suppl C):19–28CrossRefGoogle Scholar
  29. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72(7):5138–5141CrossRefGoogle Scholar
  30. Khor WC, Andersen S, Vervaeren H, Rabaey K (2017) Electricity-assisted production of caproic acid from grass. Biotechnol Biofuels 10(1):180CrossRefGoogle Scholar
  31. Kleerebezem R, Van Loosdrecht MCM (2010) A generalized method for thermodynamic state analysis of environmental systems. Crit Rev Environ Sci Technol 40(1):1–54CrossRefGoogle Scholar
  32. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci 107(29):13087–13092CrossRefGoogle Scholar
  33. Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22(3):320–325CrossRefGoogle Scholar
  34. Kucek LA, Spirito CM, Angenent LT (2016) High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energ Environ Sci 9(11):3482–3494CrossRefGoogle Scholar
  35. Lagoa-Costa B, Abubackar HN, Fernández-Romasanta M, Kennes C, Veiga MC (2017) Integrated bioconversion of syngas into bioethanol and biopolymers. Bioresour Technol 239(suppl C):244–249CrossRefGoogle Scholar
  36. Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87CrossRefGoogle Scholar
  37. Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42(7):2401–2407CrossRefGoogle Scholar
  38. Lee J, Jang N, Yasin M, Lee EY, Chang IS, Kim C (2016) Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation. J Ind Eng Chem 39:149–152CrossRefGoogle Scholar
  39. Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation – a flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694CrossRefGoogle Scholar
  40. Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. N Biotechnol 26(3–4):117–121CrossRefGoogle Scholar
  41. Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour Technol 152:337–346CrossRefGoogle Scholar
  42. Logan B, Regan J (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40(17):5172–5180CrossRefGoogle Scholar
  43. Löser C, Schröder A, Deponte S, Bley T (2005) Balancing the ethanol formation in continuous bioreactors with ethanol stripping. Eng Life Sci 5(4):325–332CrossRefGoogle Scholar
  44. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186(7):2099–2106CrossRefGoogle Scholar
  45. Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94CrossRefGoogle Scholar
  46. Martin ME, Richter H, Saha S, Angenent LT (2016) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113(3):531–539CrossRefGoogle Scholar
  47. Massaro V, Digiesi S, Mossa G, Ranieri L (2015) The sustainability of anaerobic digestion plants: a win–win strategy for public and private bodies. J Clean Prod 104:445–459CrossRefGoogle Scholar
  48. Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158CrossRefGoogle Scholar
  49. Meng F, Zhang S, Oh Y, Zhou Z, Shin H-S, Chae S-R (2017) Fouling in membrane bioreactors: an updated review. Water Res 114:151–180CrossRefGoogle Scholar
  50. Miltner A, Wukovits W, Pröll T, Friedl A (2010) Renewable hydrogen production: a technical evaluation based on process simulation. J Clean Prod 18(suppl 1):S51–S62CrossRefGoogle Scholar
  51. Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87(6):837–843CrossRefGoogle Scholar
  52. Moresi M, Sappino F (2000) Electrodialytic recovery of some fermentation products from model solutions: techno-economic feasibility study. J Membr Sci 164(1–2):129–140CrossRefGoogle Scholar
  53. Muller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69(11):6345–6353CrossRefGoogle Scholar
  54. Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26(6):1616–1621CrossRefGoogle Scholar
  55. Nerenberg R (2016) The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr Opin Biotechnol 38:131–136CrossRefGoogle Scholar
  56. Parsley D, Ciora RJ, Flowers DL, Laukaitaus J, Chen A, Liu PKT, Yu J, Sahimi M, Bonsu A, Tsotsis TT (2014) Field evaluation of carbon molecular sieve membranes for the separation and purification of hydrogen from coal- and biomass-derived syngas. J Membr Sci 450(suppl C):81–92CrossRefGoogle Scholar
  57. Peintner C, Zeidan AA, Schnitzhofer W (2010) Bioreactor systems for thermophilic fermentative hydrogen production: evaluation and comparison of appropriate systems. J Clean Prod 18:S15–S22CrossRefGoogle Scholar
  58. Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015) Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 192:296–303CrossRefGoogle Scholar
  59. Redwood MD, Orozco RL, Majewski AJ, Macaskie LE (2012) An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresour Technol 119:384–392CrossRefGoogle Scholar
  60. Revelles O, Tarazona N, García JL, Prieto MA (2016) Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. Environ Microbiol 18(2):708–720CrossRefGoogle Scholar
  61. Richter H, Molitor B, Wei H, Chen W, Aristilde L, Angenent LT (2016) Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energ Environ Sci 9(7):2392–2399CrossRefGoogle Scholar
  62. Sancho-Navarro S, Cimpoia R, Bruant G, Guiot SR (2016) Biomethanation of syngas using anaerobic sludge: shift in the catabolic routes with the CO partial pressure increase. Front Microbiol 7:1188CrossRefGoogle Scholar
  63. Schroder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energ Environ Sci 8(2):513–519CrossRefGoogle Scholar
  64. Schuchmann K, Muller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809–821CrossRefGoogle Scholar
  65. Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci 105(6):2128–2133CrossRefGoogle Scholar
  66. Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29CrossRefGoogle Scholar
  67. Shen Y, Jarboe L, Brown R, Wen Z (2015) A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 33(8):1799–1813CrossRefGoogle Scholar
  68. Shen Y, Wang J, Ge X, Chen M (2016) By-products recycling for syngas cleanup in biomass pyrolysis – an overview. Renew Sustain Energy Rev 59(suppl C):1246–1268CrossRefGoogle Scholar
  69. Sheth PN, Babu BV (2010) Production of hydrogen energy through biomass (waste wood) gasification. Int J Hydrogen Energy 35(19):10803–10810CrossRefGoogle Scholar
  70. Singla A, Verma D, Lal B, Sarma PM (2014) Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol. Bioresour Technol 172:41–49CrossRefGoogle Scholar
  71. Speight JG (2005) Lange’s handbook of chemistry. McGraw-Hill, New YorkGoogle Scholar
  72. Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27(0):115–122CrossRefGoogle Scholar
  73. Steinbusch KJJ, Hamelers HVM, Buisman CJN (2008) Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res 42(15):4059–4066CrossRefGoogle Scholar
  74. Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN (2011) Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energ Environ Sci 4(1):216–224CrossRefGoogle Scholar
  75. Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM (2008) Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol 80(6):1121–1130CrossRefGoogle Scholar
  76. Thammasittirong SN-R, Thirasaktana T, Thammasittirong A, Srisodsuk M (2013) Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. SpringerPlus 2(1):583CrossRefGoogle Scholar
  77. Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K (1968) The energy metabolism of Clostridium kluyveri. Eur J Biochem 4(2):173–180CrossRefGoogle Scholar
  78. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180Google Scholar
  79. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591CrossRefGoogle Scholar
  80. Torres W, Pansare SS, Goodwin JG (2007) Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 49(4):407–456CrossRefGoogle Scholar
  81. Valgepea K, de Souza Pinto Lemgruber R, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, Behrendorff JB, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E (2017) Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens. Cell Syst 4(5):505–515.e5CrossRefGoogle Scholar
  82. Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X (2014) Membrane cleaning in membrane bioreactors: a review. J Membr Sci 468:276–307CrossRefGoogle Scholar
  83. Wang Y-Q, Yu S-J, Zhang F, Xia X-Y, Zeng RJ (2017) Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Appl Microbiol Biotechnol 101(6):2619–2627CrossRefGoogle Scholar
  84. Wang H-J, Dai K, Xia X-Y, Wang Y-Q, Zeng RJ, Zhang F (2018a) Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. J Clean Prod 187:165–170CrossRefGoogle Scholar
  85. Wang Y-Q, Zhang F, Zhang W, Dai K, Wang H-J, Li X, Zeng RJ (2018b) Hydrogen and carbon dioxide mixed culture fermentation in a hollow-fiber membrane biofilm reactor at 25°C. Bioresour Technol 249:659–665CrossRefGoogle Scholar
  86. Wilbanks B, Trinh CT (2017) Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. Biotechnol Biofuels 10(1):262CrossRefGoogle Scholar
  87. Woolcock PJ, Brown RC (2013) A review of cleaning technologies for biomass-derived syngas. Biomass Bioenergy 52(suppl C):54–84CrossRefGoogle Scholar
  88. Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35(7):2690–2696CrossRefGoogle Scholar
  89. Xu J, Guzman JJL, Andersen SJ, Rabaey K, Angenent LT (2015) In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem Commun 51(31):6847–6850CrossRefGoogle Scholar
  90. Xue C, Zhao JB, Liu FF, Lu CC, Yang ST, Bai FW (2013) Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresour Technol 135:396–402CrossRefGoogle Scholar
  91. Xue C, Liu F, Xu M, Zhao J, Chen L, Ren J, Bai F, Yang S-T (2016) A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnol Bioeng 113(1):120–129CrossRefGoogle Scholar
  92. Yasin M, Jeong Y, Park S, Jeong J, Lee EY, Lovitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177:361–374CrossRefGoogle Scholar
  93. Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45CrossRefGoogle Scholar
  94. Zhang F, Huang C, Xu T (2009) Production of sebacic acid using two-phase bipolar membrane electrodialysis. Ind Eng Chem Res 48(16):7482–7488CrossRefGoogle Scholar
  95. Zhang Y, Pinoy L, Meesschaert B, Van der Bruggen B (2011) Separation of small organic ions from salts by ion-exchange membrane in electrodialysis. AIChE J 57(8):2070–2078CrossRefGoogle Scholar
  96. Zhang F, Ding J, Shen N, Zhang Y, Ding Z-W, Dai K, Zeng RJ (2013a) In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 97(23):10233–10240CrossRefGoogle Scholar
  97. Zhang F, Ding J, Zhang Y, Chen M, Ding Z-W, van Loosdrecht MCM, Zeng RJ (2013b) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47(16):6122–6129CrossRefGoogle Scholar
  98. Zhang F, Zhang Y, Chen M, van Loosdrecht MCM, Zeng RJ (2013c) A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnol Bioeng 110(7):1884–1894CrossRefGoogle Scholar
  99. Zhao H-P, Ontiveros-Valencia A, Tang Y, Kim B-O, VanGinkel S, Friese D, Overstreet R, Smith J, Evans P, Krajmalnik-Brown R, Rittmann B (2014) Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors. Water Res 54:115–122CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Soil Environmental Health and RegulationCollege of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations