Advertisement

Biorefinery pp 281-312 | Cite as

Bio-Products from Sugar-Based Fermentation Processes

  • Zsófia KádárEmail author
  • César Fonseca
Chapter

Abstract

This chapter focuses in the research and development on bio-products generated from sugar-rich substrates, like lignocellulose, starch, sucrose, or pure monosaccharides (e.g., glucose), through direct microbial fermentation processes or through the hydrolysis of polysaccharides into fermentable sugars followed by microbial fermentation. Dozens of bio-products are generated from sugars through fermentation processes using modified and unmodified bacteria, yeasts, or filamentous fungi, but only a few processes are under or close to commercialization. Among these bio-products are alcohols, organic acids, microbial oils and hydrocarbons, enzymes, biosurfactants, and biopolymers.

Keywords

Biomass Sugar platform Fermentation Bio-products 

References

  1. Abdel-Rahman MA, Sonomoto K (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 236:176–192CrossRefGoogle Scholar
  2. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301CrossRefGoogle Scholar
  3. Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66CrossRefGoogle Scholar
  4. Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349CrossRefGoogle Scholar
  5. Alonso S, Rendueles M, Díaz M (2015) Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 35(4):497–513CrossRefGoogle Scholar
  6. Baccile N, Babonneau F, Banat IM, Ciesielska K, Cuvier A-S, Devreese B, Everaert B, Lydon H, Marchant R, Mitchell CA, Roelants S, Six L, Theeuwes E, Tsatsos G, Tsotsou GE, Vanlerberghe B, Van Bogaert INA, Soetaert W (2017) Development of a cradle-to-grave approach for acetylated acidic sophorolipid biosurfactants. ACS Sust Chem Eng 5:1186–1198CrossRefGoogle Scholar
  7. Bahia FM, Almeida GC, Andrade LP, Campos CG, Queiroz LR, Silva RLV, Abdelnur PV, Corrêa JR, Bettiga M, Parachin NS (2018) Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae. Sci Rep 8:2905CrossRefGoogle Scholar
  8. Baral NR, Slutzky L, Shah A, Ezeji TC, Cornish K, Christy A (2016) Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiol Lett 363(6)CrossRefGoogle Scholar
  9. Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32:1508CrossRefGoogle Scholar
  10. Benjamin KR, Silva IR, Cherubim JP, McPhee D, Paddon CJ (2016) Developing commercial production of semi-synthetic artemisinin, and of β-Farnesene, an isoprenoid produced by fermentation of Brazilian sugar. J Braz Chem Soc 27(8):1339–1345Google Scholar
  11. Beuker J, Barth T, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016) High titer heterologous rhamnolipid production. AMB Express 6:124CrossRefGoogle Scholar
  12. Branduardi P, Porro N (2016) n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. FEMS Microbiol Lett 363:fnw070CrossRefGoogle Scholar
  13. Brumano LP, Soler MF, da Silva SS (2016) Recent advances in sustainable production and application of biosurfactants in Brazil and Latin America. Ind Biotechnol 12(1):31–39CrossRefGoogle Scholar
  14. Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194CrossRefGoogle Scholar
  15. Chen QC (2010) Industrial production of PHA. In: Chen QC (ed) Plastics from bacteria: natural functions and applications, microbiology monographs, vol 14. Springer, Berlin, pp 121–132CrossRefGoogle Scholar
  16. Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:137CrossRefGoogle Scholar
  17. Daniel H, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett 20:1153CrossRefGoogle Scholar
  18. Deloitte Report (2014) Opportunities for the fermentation-based chemical industry. An analysis of the market potential and competitiveness of North-West Europe. https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/manufacturing/deloitte-nl-manufacturing-opportunities-for-the-fermentation-based-chemical-industry-2014.pdf. Accessed June 2018
  19. Demain AL, Martens E (2017) Production of valuable compounds by molds and yeasts. J Antibiot 70:347–360CrossRefGoogle Scholar
  20. Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Abt TD, Bonini BM, Lidén G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89CrossRefGoogle Scholar
  21. El Takriti S, Pavlenko N, Searle S (2017) Mitigating international aviation emissions: risks and opportunities for alternative jet fuels. https://www.theicct.org/sites/default/files/publications/Aviation-Alt-Jet-Fuels_ICCT_White-Paper_22032017_vF.pdf
  22. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386CrossRefGoogle Scholar
  23. Endres HJ, Siebert-Raths A (2011) Basics of PHA. Bioplast Mag 6(5):43–45Google Scholar
  24. Faria NT, Santos MV, Fernandes P, Fonseca LL, Fonseca C, Ferreira FC (2014a) Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and D-glucose/D-xylose mixtures by Pseudozyma yeast strains. Process Biochem 49:1790–1799CrossRefGoogle Scholar
  25. Faria NT, Santos MV, Ferreira C, Marques S, Ferreira FC, Fonseca C (2014b) Conversion of cellulosic materials into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma spp. under SHF and SSF processes. Microb Cell Fact 13:155CrossRefGoogle Scholar
  26. Faria NT, Marques S, Fonseca C, Ferreira FC (2015) Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048T. Enzyme Microb Technol 71:58–65CrossRefGoogle Scholar
  27. Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159–5164CrossRefGoogle Scholar
  28. Felpeto-Santero C, Rojas A, Tortajada M, Galán B, Ramón D, García JL (2015) Engineering alternative isobutanol production platforms. AMB Express 5:119CrossRefGoogle Scholar
  29. Fonseca C, Olofsson K, Ferreira C, Runquist D, Fonseca LL, Hahn-Hägerdal B, Lidén G (2011) The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 48:518–525CrossRefGoogle Scholar
  30. Garcia-Sanchez R, Karhumaa K, Fonseca C, Sanchez N, Almeida VJR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13CrossRefGoogle Scholar
  31. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:55–89Google Scholar
  32. Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7:222–229CrossRefGoogle Scholar
  33. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefGoogle Scholar
  34. Global Market Insights, Inc.. https://www.gminsights.com/industry-analysis/farnesene-market. Accessed Jan 2018
  35. Guettler MV, Jain MK (1996) Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants. U.S. patent 5521075Google Scholar
  36. Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477CrossRefGoogle Scholar
  37. IEA Bioenergy Report Task 42 (2012) Bio-based chemicals: value added products from biorefineriesGoogle Scholar
  38. Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17(5)Google Scholar
  39. Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I (2016) Review carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157CrossRefGoogle Scholar
  40. Jin YS, Jones S, Shi NQ, Jeffries TW (2002) Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68:1232–1239CrossRefGoogle Scholar
  41. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524Google Scholar
  42. Jun H, Kieselbach T, Jönsson LJ (2011) Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Fact 10:68CrossRefGoogle Scholar
  43. Juturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36(6):967–997CrossRefGoogle Scholar
  44. Kang A, Lee TS (2015) Converting sugars to biofuels: ethanol and beyond. Bioengineering 2:184–203CrossRefGoogle Scholar
  45. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368CrossRefGoogle Scholar
  46. Kaur G, Roy I (2015) Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 29(2):157–172CrossRefGoogle Scholar
  47. Koller M, Braunegg G (2015) Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2:94–121CrossRefGoogle Scholar
  48. Komesu A, de Oliveira JAR, da Silva Martins LH, Wolf Maciel MR, Maciel Filho RM (2017) Lactic acid production to purification: a review. BioRes 12(2):4364–4383Google Scholar
  49. Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369CrossRefGoogle Scholar
  50. Kootstra M, Elissen H, Huurman S (2017) PHA’s (polyhydroxyalkanoates): general information on structure and raw materials for their production. A running document for “Kleinschalige Bioraffinage WP9: PHA”, Task 5. Report 727Google Scholar
  51. Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55CrossRefGoogle Scholar
  52. Kuhnert P, Scholten E, Haefner S, Mayor D, Frey J (2010) Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int J Syst Evol Microbiol 60:44–50CrossRefGoogle Scholar
  53. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005a) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934CrossRefGoogle Scholar
  54. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005b) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409CrossRefGoogle Scholar
  55. Lange A, Becker J, Schulze D, Cahoreau E, Portais J-C, Haefner S, Schröder H, Krawczyk J, Zelder O, Wittmann C (2017) Bio-based succinate from sucrose: high-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab Eng 44:198–212CrossRefGoogle Scholar
  56. Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549CrossRefGoogle Scholar
  57. Leavell MD, McPhee, DJ, Paddon CJ (2016) Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37:114–119CrossRefGoogle Scholar
  58. Lee PC, Lee SY, Hong SH, Chang HN, Park SC (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114CrossRefGoogle Scholar
  59. Lee SH, Yun EJ, Kim J, Lee SJ, Um Y, Kim KH (2016) Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 100:8255–8271CrossRefGoogle Scholar
  60. Li Y, Ge X (2016) Advances in bioenergy, vol 1, 1st edn. Academic Press, New YorkGoogle Scholar
  61. Li Q, Xing J (2015) Microbial succinic acid production using different bacteria species. In: Kamm B (ed) Microorganisms in biorefineries, Microbiology monographs, vol 26. Springer, BerlinGoogle Scholar
  62. Mans R, Daran JG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56CrossRefGoogle Scholar
  63. McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of C-13-labeled metabolic product isotopomers. Metab Eng 9:177–192CrossRefGoogle Scholar
  64. McPhee D, Pin A, Kizer L, Perelman L (2014) Squalane from sugarcane. Cosmetics & Toiletries magazine 129(6)Google Scholar
  65. Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JV, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694CrossRefGoogle Scholar
  66. Medina VG, Almering MJ, van Maris AJ, Pronk JT (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76:190–195CrossRefGoogle Scholar
  67. Mitrovich Q, Wichmann G (2017) Integrated process for production of farnesene, a versatile platform chemical, from domestic lignocellulosic feedstock. Presentation at the U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer ReviewGoogle Scholar
  68. Mordor Intelligence (2018) Surfactants market—segmented by origin, type, application, and geography—growth, trends and forecasts (2019–2024). https://www.mordorintelligence.com/industry-reports/global-market-for-surfactants-industry
  69. Morita T, Fukuoka T, Imura T, Kitamoto D (2015) Mannosylerythritol lipids: production and application. J Oleo Sci 64:133–141CrossRefGoogle Scholar
  70. Morlon-Guyot J, Guyot JP, Pot B, Jacobe de Haut I, Raimbault M (1998) Lactobacillus manihotivorans sp. nov., a new starch-hydrolyzing lactic acid bacterium isolated from cassava sour starch fermentation. Int J Syst Bacteriol 48:1101–1109CrossRefGoogle Scholar
  71. Moysés DN, Reis VCB, de Almeida JRM, de Moraes LMP, Torres FAG (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17(3):207CrossRefGoogle Scholar
  72. Murali N, Srinivas K, Ahring BK (2017) Biochemical production and separation of carboxylic acids for biorefinery applications. Fermentation 3:22CrossRefGoogle Scholar
  73. Nag A (2008) Biofuels refining and performance. McGraw Hill, New YorkGoogle Scholar
  74. Ndaba B, Chiyanzu I, Marx S (2015) n-Butanol derived from biochemical and chemical routes: a review. Biotechnol Rep 8:1–9CrossRefGoogle Scholar
  75. Nghiem NP, Kleff S, Schwegmann S (2017) Succinic acid: technology development and commercialization. Fermentation 3:26CrossRefGoogle Scholar
  76. Nitschke M, Silva SS (2017) Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr 58(4):631–638CrossRefGoogle Scholar
  77. Nwankwo D, Anadu E, Usoro R (1989) Cassava fermenting organisms. MIRCEN J 5:169–179CrossRefGoogle Scholar
  78. Obruca S, Benesova P, Marsalek L, Marovaa I (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29(2):135–144CrossRefGoogle Scholar
  79. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  80. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320CrossRefGoogle Scholar
  81. Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefin 2:319–330CrossRefGoogle Scholar
  82. Raab AM, Lang C (2011) Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioeng Bugs 2(2):120–123CrossRefGoogle Scholar
  83. Reddy G, Altaf M, Naveena BJ, Venkateshwar M, Vijay Kumar E (2008) Amylolytic bacterial lactic acid fermentation—a review. Biotechnol Adv 26:22–34CrossRefGoogle Scholar
  84. Report of Transparency Market Research (2011) BioSurfactants Market: Global Scenario, Raw Material and Consumption Trends, Industry Analysis, Size, Share and Forecasts, 2011 – 2018. http://www.sbdi.co.kr/cart/data/info/Transparency_Biosurfactants_Market_Sample.pdf. Accessed 31 May 2018
  85. Roelants SL, Saerens KM, Derycke T, Li B, Lin YC, van de Peer Y, de Maeseneire SL, van Bogaert IN, Soetaert W (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110:2494–2503CrossRefGoogle Scholar
  86. Roelants SLKW, Ciesielska K, de Maeseneire SL, Moens H, Everaert B, Verweire S, Denon Q, Vanlerberghe B, van Bogaert INA, van der Meeren P, Devreese B, Soetaert W (2016) Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng 113:550–559CrossRefGoogle Scholar
  87. Rooke JA, Hatfield RD (2003) Biochemistry of ensiling. In Silage science and technology. Edited by Buxton DR, Muck RE, Harrison JH, Madison, Wisconsin. USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 95–140Google Scholar
  88. Rubber Journal of Asia (RJA) (2017) Kuraray’s liquid farnesene rubber used in SRI tyres for the first time. http://rubberjournalasia.com/kurarays-liquid-farnesene-rubber-used-in-sri-tyres-for-the-first-time/. Accessed Jan 2018
  89. Ryan C (2018) An overview of Gevo’s biobased isobutanol production process. https://gevo.com/wp-content/uploads/2018/02/isobutanol-process.pdf. Accessed Apr 2018
  90. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016CrossRefGoogle Scholar
  91. Sajna KV, Höfer R, Sukumaran RK, Gottumukkala LD, Pandey A (2015) White biotechnology in biosurfactants. In: Pandey A, Hofer R, Larroche C, Taherzadeh M, Nampoothiri M (eds) Industrial biorefineries & white biotechnology. Ch. 14. Elsevier B.V., Amsterdam, pp 499–521CrossRefGoogle Scholar
  92. Sauer M (2016) Industrial production of acetone and butanol by fermentation—100 years later. FEMS Microbiol Lett 363(13)CrossRefGoogle Scholar
  93. Schadeweg V, Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44CrossRefGoogle Scholar
  94. Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P (2013) Butanol fermentation. Environ Technol 34:13–14CrossRefGoogle Scholar
  95. Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta 1508:235–251CrossRefGoogle Scholar
  96. Song H, Lee SY (2006) Review: production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39:352–361CrossRefGoogle Scholar
  97. Souza EC, Vessoni-Penna TC, de Souza Oliveira RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeter Biodegr 89:88–94CrossRefGoogle Scholar
  98. Swidah R, Wang H, Reid PJ, Ahmed HZ, Pisanelli AM, Persaud KC, Grant CM, Ashe MP (2015) Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnol Biofuels 8:97CrossRefGoogle Scholar
  99. Tan J, Abdel-Rahman MA, Sonomoto K (2017) Biorefinery-based lactic acid fermentation: microbial production of pure monomer product. Adv Polym Sci 279:27–66CrossRefGoogle Scholar
  100. Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668–5674CrossRefGoogle Scholar
  101. van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235Google Scholar
  102. Vaswani S (2010) Bio based succinic acid. Review no. 2010-14. Report by Process Economics Program, SRI ConsultingGoogle Scholar
  103. Vecino X, Cruz JM, Moldes AB, Rodrigues LR (2017) Biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 37(7):911–923CrossRefGoogle Scholar
  104. Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65CrossRefGoogle Scholar
  105. Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid. Food Technol Biotechnol 44(2):163–172Google Scholar
  106. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914CrossRefGoogle Scholar
  107. Wyman CE (1996) Handbook on bioethanol—production and utilization. Taylor & Francis, Washington, DCGoogle Scholar
  108. Wyman CE, Dale BE (2015) Producing biofuels via the sugar platform. American Institute of Chemical Engineers (AIChE). www.aiche.org/cep. Accessed Mar 2018
  109. Xin F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H (2017) Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10:118CrossRefGoogle Scholar
  110. Xu H, Kim S, Sorek H, Lee Y, Jeong D, Kim J, Oh EJ, Yun EJ, Wemmer DE, Kim KH, Kim SR, Jin YS (2016) PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng 34:88–96CrossRefGoogle Scholar
  111. Yang L, Lübeck M, Ahring BK, Lübeck P (2016) Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei. Appl Microbiol Biotechnol 100:1799–1809CrossRefGoogle Scholar
  112. Zhao J, Lu C, Chen CC, Yang ST (2013) Biological production of butanol and higher alcohols. In: Yang ST, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Section for Sustainable Biotechnology, Department of Chemistry and BioscienceAalborg UniversityCopenhagenDenmark

Personalised recommendations