Advertisement

Biorefinery pp 253-277 | Cite as

Industrial Food Waste Valorization: A General Overview

  • Juan A. CeciliaEmail author
  • Cristina García-Sancho
  • Pedro J. Maireles-Torres
  • Rafael Luque
Chapter

Abstract

The decline of fossil fuels, caused by several factors as overpopulation, the threat of global warming, and the scarcity of fossil resources require the development of sustainable and innovative strategies for the chemical industry. Nowadays, the world population is experiencing constrains imposed by our resource system. This fact has led to the development of more efficiency process or the valorization of wastes. In this sense, the food supply chain wastes have emerged as a potential resource to be employed as raw material to obtain high added-value products given the abundant volumes globally generated, the high variety of its chemical composition, and the opportunity to be recycled or reutilized to obtain fuels and chemicals.

The aim of this research is to provide an overview of the innovative treatments of food supply chain waste, providing a range of worldwide case studies from around the globe. These studies are focused on examples illustrating the use of citrus peel, the cashew shell nut liquid, and the waste cooking oil to obtain valuable products. In addition, this manuscript also aims to emphasize the strategies to the reutilization and valorization of these food wastes as alternative to the conventional treatments as incineration for energy recovery, feed, or composting. Finally, the influence of food regulations on food supply chain waste valorization will also be addressed as well as our society’s behavior toward food supply chain waste.

Keywords

Industrial food waste Industrial food waste valorization Biorefinery Supply chain Food waste classification 

References

  1. ADAS UK Ltd (2007) West midlands non-food crops opportunities/mapping study. Accessed 15 Oct 2007Google Scholar
  2. Antizar-Ladislao B, Turrion-Gomez JL (2010) Energies 3:194–205CrossRefGoogle Scholar
  3. Attanasi OA, Berretta S, Fiani C, Filippone P, Mele G, Saladino R (2006) Tetrahedron 62:6113–6120CrossRefGoogle Scholar
  4. Azam-Ali SH, Judge EC (2001) Small-scale cashew nut processing. ITDG Schumacher Centre for Technology and Development Bourton on Dunsmore, Rugby, Warwickshire, UK, FAOGoogle Scholar
  5. Balu AM, Budarin V, Shuttleworth PS, Pfaltzgraff LA, Waldron K, Luque R, Clark JH (2012) ChemSusChem 5:1694–1697CrossRefGoogle Scholar
  6. Bentley J (2001) In: Gunstone FD, Hamilton RJ (eds) Oleochemical manufacture and applications, 1st edn. Sheffield Academic Press, Sheffield, pp 164–193Google Scholar
  7. Bhunia HP, Nando GB, Basak A, Lenka S, Nayak PK (1999) Eur Polym J 35:1381–1391CrossRefGoogle Scholar
  8. Bono A, Pin OP, Jiun CP (2010) J Appl Sci 10:2508–2515CrossRefGoogle Scholar
  9. Booth G, Delatte DE, Thames SF (2007) Ind Crop Prod 25:257–265CrossRefGoogle Scholar
  10. Boyde S (2002) Green Chem 4:293–307CrossRefGoogle Scholar
  11. Braddock RJ (1999) Handbook of citrus by-products and processing technology. Wiley-Interscience, Weinheim, p 186Google Scholar
  12. Carlsson AS (2009) Biochimie 91:665–670CrossRefGoogle Scholar
  13. Cetinkaya M, Karaosmanoglu F (2004) Energy Fuel 18:1888–1895CrossRefGoogle Scholar
  14. Charusiri W, Vitidsant T (2005) Energy Fuel 19:1783–1789CrossRefGoogle Scholar
  15. Charusiri W, Yongchareon W, Vitidsant T (2006) Korean J Chem Eng 23:349–355CrossRefGoogle Scholar
  16. Demirbas FM, Balat M, Balat H (2011) Energy Convers Manage 52:1815–1828CrossRefGoogle Scholar
  17. Directive (2008a) Directive 2008/38/EC of 5th, March 2008, establishing a list of intended uses of animal feeding stuffs for particular nutritional purposesGoogle Scholar
  18. Directive (2008b) Directive 2008/98/EC of 19 (November 2008) OJ L312, Article 3(1), pp 3–30Google Scholar
  19. Directive (2008c) Directive 2008/98/EC on waste (Waste Framework Directive)Google Scholar
  20. Directive (2008d) Directive 2008/98/EC of the European Parliament and of the council of the 19 November 2008 on waste and repealing certain DirectivesGoogle Scholar
  21. Djilas S, Canadanovic-Brunet J, Cetkovic G (2009) Chem Ind Chem Eng Q 15:191–202CrossRefGoogle Scholar
  22. Dodson JR, Hunt AJ, Budarin VL, Matharu AS, Clark JH (2012) RSC Adv 1:523–530CrossRefGoogle Scholar
  23. ENDS (1999) ENDS Report 294, Environmental Data ServicesGoogle Scholar
  24. Farges-Haddani B, Tessier B, Chenu S, Chevalot I, Harscoat C, Marc I, Goergen JL, Marc A (2006) Process Biochem 41:2297–2304CrossRefGoogle Scholar
  25. Fazlollah-Ghoreishi S, Pirmohammadi R, Teimouri-Yansari A (2007) J Anim Vet Adv 6:1074–1078Google Scholar
  26. Ferreira-Leitao V, Fortes Gottschalk LM (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valorization 1:65–76CrossRefGoogle Scholar
  27. Hamad FB, Mubofu EB, Makame YMM (2011) Cat Sci Technol 1:444–452CrossRefGoogle Scholar
  28. Hayder AA, Rosli MY, Abdurrahman HN, Nizam MK (2011) Int J Phys Sci 6:4695–4699Google Scholar
  29. Hendriks CMA, Lambrecht E, Nabuurs GJ, Gellynck X, Welck H (2016) Compendium on research results on agriculture and forest-biomass side-streams. AGRIFORVALOR Project. Grant Agreement 696394Google Scholar
  30. Huber GW, O’Connor P, Corma A (2007) Appl Catal A 329:120–129CrossRefGoogle Scholar
  31. Janaun J, Ellis N (2010) Renew Sust Energ Rev 14:1312–1320CrossRefGoogle Scholar
  32. John G, Shankar BV, Jadhav SR, Vemula PK (2010) Langmuir 26:17843–17851CrossRefGoogle Scholar
  33. Katami T, Yasuhara A, Shibamoto T (2004) Formation of dioxins from incineration of foods found in domestic garbage. Environ Sci Technol 38:1062–1065CrossRefGoogle Scholar
  34. Katryniok B, Paul S, Dumeignil F (2013) ACS Catal 3:1819–1834CrossRefGoogle Scholar
  35. Kerton FM (2009) Alternative solvents for Green Chemistry, 1st edn. RSC, London, pp 97–117Google Scholar
  36. Koutinas AA, Papanikolaou S (2011) In: Luque R, Campelo J, Clark JH (eds) Handbook of biofuels production—processes and technologies. Woodhead, Cambridge, pp 177–198CrossRefGoogle Scholar
  37. Li Q, Siles JA, Thompson IA (2010) Appl Microbiol Biotechnol 88:671–678CrossRefGoogle Scholar
  38. Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6:426–464CrossRefGoogle Scholar
  39. List of Hazardous Waste, EN (2000) Official Journal of the European Communities L 226/3, 6.9.2000, (2000/532/EC)Google Scholar
  40. Litchfield JH (1987) Food Biotechnol 1:29–57CrossRefGoogle Scholar
  41. Llomo OO, Makame YMM, Mkayula LL (2005) Bull Chem Soc Ethiop 19:9–16Google Scholar
  42. Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Energy Environ Sci 1:542–564CrossRefGoogle Scholar
  43. Ma E, Cervera Q, Sanchez GMM (1993) Bioresour Technol 44:61–63CrossRefGoogle Scholar
  44. Marin FR, Soler-Rivas C, Benavente-Garcia O, Castillo J, Perez-Alvarez JA (2007) Food Chem 100:736–741CrossRefGoogle Scholar
  45. Mkayula LL, Makame YMM, Matechi TH (2004) Tanz J Sci 30:1–10Google Scholar
  46. Mmongoyo JA, Mgani QA, Mdachi SJM, Pogorzelec PJ, Cole-Hamilton DJ (2012) Eur J Lipid Sci Technol 114:1183–1192CrossRefGoogle Scholar
  47. Moran C, Perez L, Pons R, Pinazo A, Infante MR (1999) In: Kjellin M, Johansson I (eds) Surfactants from renewable resource, 1st edn. Wiley-Interscience, Weinheim, pp 85–107Google Scholar
  48. Morton JF (1987) In: Morton JF (ed) Fruits of warm climates. Cashew Apple, Miami, pp 239–240Google Scholar
  49. Mwalongo GCJ, Mkayula LL, Dawson-Andoh B, Mubofu EB, Shields J, Mwingira BA (1999) Green Chem 35:13–16CrossRefGoogle Scholar
  50. Narashimharao K, Lee A, Wilson K (2007) J Biobaased Mater Bioenergy 1:19–30Google Scholar
  51. Ozmen P, Aslanzadeh S (2009) Master of Science, University of BorasGoogle Scholar
  52. Peungjitton P, Sangvanich P, Pornpakakul S, Petsom A, Roengsumran S (2009) J Surfactant Deterg 12:85–89CrossRefGoogle Scholar
  53. Philip J, Buchweishaija J, Mkayula LL, Ye L (2007) J Agric Food Chem 55:8870–8876CrossRefGoogle Scholar
  54. Pinto GA, Giordano RLC, Giordano RC (2009) Bioprocess Biosyst Eng 32:69–78CrossRefGoogle Scholar
  55. Poeschl M, Ward S, Owende P (2010) Renew Sust Energ Rev 14:1782–1797CrossRefGoogle Scholar
  56. Pourbafrani M, Forgacs G, Horvath IS, Niklasson C, Taherzadeh M (2010) Bioresour Technol 101:4246–4250CrossRefGoogle Scholar
  57. Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C (2010) Ind Crop Prod 32:607–612CrossRefGoogle Scholar
  58. Regulation (EC) (2009) Regulation (EC) No. 1069/2009 of the European Parliament and the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption, OJ L300, 14 November 2009, pp 1–33Google Scholar
  59. Rezaei PS, Shafaghat H, Daud WMAW (2014) Appl Catal A Gen 469:490–511CrossRefGoogle Scholar
  60. Saboya RMA, Cecilia JA, García-Sancho C, Sales AV, de Luna FMT, Rodríguez-Castellón E, Cavalcante CL Jr (2017) Catal Today 279:274–285CrossRefGoogle Scholar
  61. Schreck D, Kruper WJ, Varjian RD, Jones ME, Campbell RM, Kearns K, Hook BD, Briggs JR, Hippler JG (2006) WO2006020234Google Scholar
  62. Shashidhara YM, Jayaram SR (2010) Tribol Int 43:1073–1081CrossRefGoogle Scholar
  63. Shuttleworth P, Budarin V, Gronnow M, Clark JH, Luque R (2012) J Nat Gas Chem 21:270–274CrossRefGoogle Scholar
  64. Siles Lopez JA, Li Q, Thompson IP (2010) Crit Rev Biotechnol 30:63–69CrossRefGoogle Scholar
  65. Tuck MWM, Tilley SN (2007) International Patent WO2007010299Google Scholar
  66. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Science 337:695–699CrossRefGoogle Scholar
  67. Vazquez JA, Murado MA (2008) Enzym Microb Technol 43:66–72CrossRefGoogle Scholar
  68. Viriya-Empikul N, Krasae P, Nualpaeng W, Yoosuk B, Faungnawakij K (2012) Fuel 92:39–244CrossRefGoogle Scholar
  69. Werpy T, Petersen G (2004) Top value added chemicals from biomass. U.S. Renewable Energy Laboratory (NREL), Oak Ridge, TNGoogle Scholar
  70. Widmer W, Zhou W, Grohmann K (2010) Bioresour Technol 101:5242–5249CrossRefGoogle Scholar
  71. Wisniewski A, Wiggers VR, Simionatto EL, Meier HF, Barros AAC, Madureira LAS (2010) Fuel 89:563–568CrossRefGoogle Scholar
  72. Xia Y, Larock RC (2010) Green Chem 12:1893–1909CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan A. Cecilia
    • 1
    Email author
  • Cristina García-Sancho
    • 1
  • Pedro J. Maireles-Torres
    • 1
  • Rafael Luque
    • 2
  1. 1.Dpto. Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de MálagaMálagaSpain
  2. 2.Departamento de Química OrgánicaUniversidad de CórdobaCórdobaSpain

Personalised recommendations