Advertisement

Introduction

  • Nereo Markulic
  • Kuba Raczkowski
  • Jan Craninckx
  • Piet Wambacq
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter introduces a local oscillator (LO) as a building block that finds place in the hearth of every modern wireless transceiver. Initially, we discuss the LO performance metrics such as phase noise, spurious content, frequency granularity, and power consumption in context of down/up conversion in accurate receive and transmit modes. An LO is typically implemented within a phase-locked loop (PLL), a system that has been intensively researched for a number of years. We follow its development from initial, purely analog implementations to modern digitally intensive solutions. We discuss the basic theory of operation with practical implementation in mind. The discussion gradually arrives to recently introduced subsampling PLL architectures that tend to overcome typical performance limitations of prior art, offering extreme low-noise synthesis potential.

References

  1. [Borremans10]
    J. Borremans, K. Vengattaramane, V. Giannini, B. Debaillie, W. Van Thillo, J. Craninckx, A 86 MHz–12 GHz digital-intensive PLL for software-defined radios, using a 6 fJ/step TDC in 40 nm digital CMOS. IEEE J. Solid-State Circuits 45(10), 2116–2129 (2010)CrossRefGoogle Scholar
  2. [Craninckx98a]
    J. Craninckx, M.S. Steyaert, A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE J. Solid-State Circuits 33(12), 2054–2065 (1998)CrossRefGoogle Scholar
  3. [Craninckx98b]
    J. Craninckx, M. Steyaert, Wireless CMOS Frequency Synthesizer Design (Kluwer Academic Publishers, Dordrecht, 1998)CrossRefGoogle Scholar
  4. [Gao09]
    X. Gao, E. Klumperink, M. Bohsali, B. Nauta, A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N 2 . IEEE J. Solid-State Circuits 44(12), 3253–3263 (2009)CrossRefGoogle Scholar
  5. [Gao10]
    X. Gao, E. Klumperink, G. Socci, M. Bohsali, B. Nauta, Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector. IEEE J. Solid-State Circuits 45(9), 1809–1821 (2010)CrossRefGoogle Scholar
  6. [Gardner66]
    F.M. Gardner, Phaselock Techniques (Wiley, London, 1966)Google Scholar
  7. [Gupta06]
    M. Gupta, B.-S. Song, A 1.8-GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration. IEEE J. Solid-State Circuits 41(12), 2842–2851 (2006)CrossRefGoogle Scholar
  8. [Hsu08]
    C.-M. Hsu, M.Z. Straayer, M.H. Perrott, A low-noise wide-BW 3.6-GHz digital Δ Σ fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation. IEEE J. Solid-State Circuits 43(12), 2776–2786 (2008)CrossRefGoogle Scholar
  9. [Huh04]
    H. Huh, Y. Koo, K.-Y. Lee, Y. Ok, S. Lee, D. Kwon, J. Lee, J. Park, K. Lee, D.-K. Jeong et al., A CMOS dual-band fractional-N synthesizer with reference doubler and compensated charge pump, in 2004 IEEE International Solid-State Circuits Conference, Digest of Technical Papers. ISSCC (IEEE, Piscataway, 2004), pp. 100–516Google Scholar
  10. [Kim13]
    H.S. Kim, C. Ornelas, K. Chandrashekar, D. Shi, P.-E. Su, P. Madoglio, W.Y. Li, A. Ravi, A digital fractional-N PLL with a PVT and mismatch insensitive TDC utilizing equivalent time sampling technique. IEEE J. Solid-State Circuits 48(7), 1721–1729 (2013)CrossRefGoogle Scholar
  11. [Lacaita07]
    A.L. Lacaita, S. Levantino, C. Samori, Integrated Frequency Synthesizers for Wireless Systems (Cambridge University Press, Cambridge, 2007)CrossRefGoogle Scholar
  12. [Meninger05]
    S. Meninger, M. Perrott, Low Phase noise, High bandwidth frequency synthesizer techniques, Ph.D. dissertation, Massachusetts Institute of Technology, 2005Google Scholar
  13. [Meninger06]
    S.E. Meninger, M.H. Perrott, A 1-MHZ bandwidth 3.6-GHz 0.18-um CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise. IEEE J. Solid-State Circuits 41(4), 966–980 (2006)CrossRefGoogle Scholar
  14. [Pamarti04]
    S. Pamarti, L. Jansson, I. Galton, A wideband 2.4-GHz delta-sigma fractional-NPLL with 1-Mb/s in-loop modulation. IEEE J. Solid-State Circuits 39(1), 49–62 (2004)CrossRefGoogle Scholar
  15. [Razavi96]
    B. Razavi, A study of phase noise in CMOS oscillators. IEEE J. Solid-State Circuits 31(3), 331–343 (1996)CrossRefGoogle Scholar
  16. [Razavi98]
    B. Razavi, R. Behzad, RF Microelectronics, vol. 2 (Prentice Hall, New Jersey, 1998)Google Scholar
  17. [Riley93]
    T.A. Riley, M.A. Copeland, T.A. Kwasniewski, Delta-sigma modulation in fractional-N frequency synthesis. IEEE J. Solid-State Circuits 28(5), 553–559 (1993)CrossRefGoogle Scholar
  18. [Ru13]
    Z. Ru, P. Geraedts, E. Klumperink, X. He, B. Nauta, A 12GHz 210fs 6mW digital PLL with sub-sampling binary phase detector and voltage-time modulated DCO, in 2013 Symposium on VLSI Circuits (VLSIC) (IEEE, Piscataway, 2013), pp. C194–C195Google Scholar
  19. [Sepe70]
    R.B. Sepe, Frequency multiplier and frequency waveform generator, U.S. Patent 3,551,826, 29 Dec 1970Google Scholar
  20. [Sharkia18]
    A. Sharkia, S. Mirabbasi, S. Shekhar, A 0.01 mm2 4.6-to-5.6GHz sub-sampling type-I frequency synthesizer with -254dB FOM, in 2018 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2018), pp. 256–257Google Scholar
  21. [Sharma18]
    J. Sharma, H. Krishnaswamy, A dividerless reference-sampling RF PLL with -253.5dB jitter FOM and <-67dBc reference spurs, in 2018 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2018), pp. 257–258Google Scholar
  22. [Sogo12]
    K. Sogo, A. Toya, T. Kikkawa, A ring-VCO-based sub-sampling PLL CMOS circuit with -119 dBc/Hz phase noise and 0.73 ps jitter, in 2012 Proceedings of the ESSCIRC (ESSCIRC) (IEEE, Piscataway, 2012), pp. 253–256Google Scholar
  23. [Staszewski06]
    R.B. Staszewski, P.T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS (Wiley, London, 2006)CrossRefGoogle Scholar
  24. [Staszewski04]
    R.B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J.L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung et al., All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS. IEEE J. Solid-State Circuits 39(12), 2278–2291 (2004)CrossRefGoogle Scholar
  25. [Stauth08]
    J.T. Stauth, Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures (ProQuest, Ann Arbor, 2008)Google Scholar
  26. [Straayer08]
    M.A. Straayer, Noise shaping techniques for analog and time to digital converters using voltage controlled oscillators. Ph.D. dissertation, Massachusetts Institute of Technology, 2008Google Scholar
  27. [Szortyka14]
    V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, P. Wambacq, 21.4 A 42mW 230fs-jitter sub-sampling 60GHz PLL in 40nm CMOS, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, Piscataway, 2014), pp. 366–367Google Scholar
  28. [Temporiti10]
    E. Temporiti, C. Weltin-Wu, D. Baldi, M. Cusmai, F. Svelto, A 3.5 GHz wideband ADPLL with fractional spur suppression through TDC dithering and feedforward compensation. IEEE J. Solid-State Circuits 45(12), 2723–2736 (2010)Google Scholar
  29. [Vengattara09]
    K. Vengattaramane, J. Borremans, M. Steyaert, J. Craninckx, A gated ring oscillator based parallel-TDC system with digital resolution enhancement, in IEEE Asian Solid-State Circuits Conference, A-SSCC 2009 (IEEE, Piscataway, 2009), pp. 57–60Google Scholar
  30. [Yao13]
    C.-W. Yao, A.N. Willson, A 2.8–3.2-GHz fractional-N digital PLL with ADC-assisted TDC and inductively coupled fine-tuning DCO. IEEE J. Solid-State Circuits 48(3), 698–710 (2013)CrossRefGoogle Scholar
  31. [Yi13]
    X. Yi, C.C. Boon, J. Sun, N. Huang, W.M. Lim, A low phase noise 24/77 GHz dual-band sub-sampling PLL for automotive radar applications in 65 nm CMOS technology, in 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, Piscataway, 2013), pp. 417–420Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nereo Markulic
    • 1
  • Kuba Raczkowski
    • 1
  • Jan Craninckx
    • 1
  • Piet Wambacq
    • 1
  1. 1.IMECLeuvenBelgium

Personalised recommendations