Advertisement

Genesis of Massive Pollucite Mineralisation in Archean LCT Pegmatites

  • Thomas DittrichEmail author
  • Thomas Seifert
  • Bernhard Schulz
  • Steffen Hagemann
  • Axel Gerdes
  • Jörg Pfänder
Chapter
Part of the SpringerBriefs in World Mineral Deposits book series (BRIEFSWMD)

Abstract

The 2650 to 2600 Ma LCT pegmatite formation within the Yilgarn, Zimbabwe and Superior cratons defines the first major LCT pegmatite formation event worldwide. Meso-Archean age pegmatites at Wodgina on the Pilbara Craton coincide with an earlier and minor formation event. The LCT pegmatites are commonly hosted in greenstone belt lithologies. It is possible to identify adjacent granitoid suites within the same age span, but no direct field evidence for a connection to potential source granites could be observed. Nd isotopic compositions of the pegmatites are close to depleted mantle, suggesting only minor Archean crustal contamination. Formation of massive pollucite mineralisation is favoured in flat lying and gently dipping large LCT pegmatite sheets. Whole rock geochemical data of the mineral zones in the studied pegmatites points to the classical fractional crystallisation with enrichment of incompatible elements. But the considerable gap in the Cs contents between the mineral zones and the massive pollucite mineralisation signals a second stage with an extreme enrichment of Cs, distinctly separated from the general development of LCT pegmatites. It is proposed that this Cs enrichment stage is initiated by melt/fluid immiscibility with separation of a melt with Cs-analcime composition, followed by enrichment of Cs in analcime melt droplets and accumulation in upper portions of a pegmatite sheet. After the accumulation, a transition to a fluid-controlled Cs enrichment of the melt toward Na-pollucite compositions takes place. The final pegmatite crystallisation with formation of cracks in massive pollucite mineralisation, passes to the late stage hydrothermal Cs-enrichment stage within a lepidolite vein network.

References

  1. Barrer RM, Baynham JW, McCallum N (1953) Hydrothermal chemistry of silicates. Part V. Compounds structurally related to analcite. J Chem Soc 832:4035–4041CrossRefGoogle Scholar
  2. Camacho A, Baadsgaard H, Davis D, Černý P (2012) Radiogenic isotope systematics of the Tanco and Silverleaf granitic pegmatites, Winnipeg River pegmatite district, Manitoba. Can Mineral 50:1775–1792CrossRefGoogle Scholar
  3. Černý P (1982) Petrogenesis of granitic pegmatites. In: Cerný P (ed) Short course in granitic pegmatites in science and industry, vol 8. Min Assoc Canada Short Course Handbook, pp 405–461Google Scholar
  4. Černý P, Harris DC (1973) Allemontite and its alteration products from the Odd West pegmatite, southeastern Manitoba. Can Mineral 11:978–984Google Scholar
  5. Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421Google Scholar
  6. Colombo F, Sfragulla J, Gonzáles del Tánago J (2012) The garnet-phosphate buffer in peraluminous granitic magmas: a case study from pegmatites in the Pocho district, Cordoba, Argentina. Can Mineral 50:1555–1571CrossRefGoogle Scholar
  7. Crook D (2018) Unearthing Australia’s first pollucite deposit. RIU Explorer’s Conference, Freemantle, Australia, 20–23 February 2018, extended abstractGoogle Scholar
  8. Crouse RA, Černý P (1972) The Tanco pegmatite at Bernic Lake, Manitoba; I, Geology and paragenesis. Can Mineral 11:591–608Google Scholar
  9. Cruciani G, Gualtieri A (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction. Am Mineral 84:112–119CrossRefGoogle Scholar
  10. Dittrich T (2016) Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) pegmatites (Western Australia, Zimbabwe) and a genetic model for the formation of massive pollucite mineralisations. Dissertation Faculty of Geosciences, Geoengineering and Mining, TU Freiberg/Saxony, Germany, 341 pp. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-228968
  11. Dittrich T, Seifert T (2013) Field work 2012—Cs-potential of LCT pegmatites in western Australia. Technical report, unpublished, prepared for: Rockwood Lithium GmbH, Frankfurt am Main. TU Bergakademie Freiberg, Division of Economic Geology and Petrology, 67 ppGoogle Scholar
  12. Dittrich T, Seifert T, Schulz B (2015) Genesis of selected lithium-cesium-tantalum- (LCT) pegmatites of Western Australia—with special regards to their exploration potential for the Cs-mineral pollucite and additional data from field work in the Bikita LCT pegmatite field (Zimbabwe). Final technical report, unpublished, prepared for: Rockwood Lithium GmbH, Frankfurt am Main. TU Bergakademie Freiberg, Division of Economic Geology and Petrology, 536 pp and AppendixGoogle Scholar
  13. Ellis AJ, Mahon WAJ (1977) Chemistry and hydrothermal systems. Academic Press, 392 ppGoogle Scholar
  14. Endo A, Yoshikawa E, Muramatsu N, Takizawa N, Kawai T, Unuma H, Sasaki A, Masano A, Takeyamac Y, Kaharac T (2013) The removal of cesium ion with natural Itaya zeolite and the ion exchange characteristics. J Chem Technol Biotechnol 88:1597–1602CrossRefGoogle Scholar
  15. Ferguson LJ, Edgar AD (1978) The petrogenesis and origin of the analcime in the volcanic rocks of the Crowsnest I Formation, Alberta. Can J Earth Sci 15:69–77CrossRefGoogle Scholar
  16. Ferreira KJ (1984) The mineralogy and geochemistry of the lower Tanco Pegmatite, Bernic Lake, Man., Canada. M.Sc. thesis, University of Manitoba Winnipeg, Canada, 256 pp (unpublished)Google Scholar
  17. Fowler AD, Doig R (1983) The significance of europium anomalies in the REE spectra of granites and pegmatites, Mont Laurier, Quebec. Geochim Cosmochim Acta 47:1131–1137CrossRefGoogle Scholar
  18. Galeschuk CR, Vanstone PJ (2005) Exploration for buried rare-element pegmatites in the Bernic Lake area of southern Manitoba. In: Linnen RL, Samson IM (eds) Rare-Element Geochemistry and Mineral Deposits. Geol Assoc Canada Short Course Notes 17:159–173Google Scholar
  19. Goscombe B, Blewett RS, Czarnota K, Groenewald PB, Maas R (2009) Metamorphic evolution and integrated terrane analysis of the eastern Yilgarn Craton: rationale, methods, outcomes and interpretation. Geol Surv West Austral Record 23, 281 ppGoogle Scholar
  20. Grosse P, Toselli AJ, Rossi JN (2010) Petrology and geochemistry of the orbicular granitoid of Sierra de Velasco (NW Argentina) and implications for the origin of orbicular rocks. Geol Mag 147:451–468CrossRefGoogle Scholar
  21. Gwavava O, Ranganai RT (2009) The geology and structure of the Masvingo greenstone belt and adjacent granite plutons from geophysical data, Zimbabwe Craton. South Afr J Geol 112:277–290CrossRefGoogle Scholar
  22. Inagaki Y, Shinkai A, Idemistu K, Arima T, Yoshikawa H, Yui M (2006) Aqueous alteration of Japanese simulated waste glass P0798: effects of alteration-phase formation on alteration rate and cesium retention. J Nucl Mater 354:171–184CrossRefGoogle Scholar
  23. Jing Z, Cai K, Li Y, Fan J, Zhang Y, Miao J, Chen Y, Jin F (2017) Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties. J Nucl Mater 488:63–69CrossRefGoogle Scholar
  24. Keith TEC, Thompson JM, Mazs RE (1983) Selective concentration of cesium in analcime during hydrothermal alteration, Yellowstone National Park, Wyoming. Geochim Cosmochim Acta 47:795–804CrossRefGoogle Scholar
  25. Komarneni S, Roy R (1981) Zeolithes for fixation of Cesium and Strontium from radwastes by thermal and hydrothermal treatments. Nucl Chem Waste Man 2:259–264CrossRefGoogle Scholar
  26. Lagache M (1995) New experimental data on the stability of the pollucite-analcime series: application to natural assemblages. Eur J Mineral 7:319–324CrossRefGoogle Scholar
  27. Lagache M, Dujon SC, Sebastian A (1995) Assemblages of Li-Cs pegmatite minerals in equilibrium with a fluid from their primary crystallization until their hydrothermal alteration: an experimental study. Mineral Petrol 55:131–143CrossRefGoogle Scholar
  28. Liou JG (1971) Analcime equilibria. Lithos 4:389–402CrossRefGoogle Scholar
  29. London D (1984) Experimental phase equilibria in the system LiAlSiO4–SiO2–H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69:995–1004Google Scholar
  30. London D (1987) Internal differentiation of rare element pegmatites: effects of boron, phosphorus and fluorine. Geochim Cosmochim Acta 51:403–420CrossRefGoogle Scholar
  31. London D (2008) Pegmatites, vol 10. Spec Publ Can Mineral, 368 pp. ISBN 978-0-921294-47-4Google Scholar
  32. London D, Morgan GBVI, Babb HA, Loomis JL (1993) Behavior and effects of phosphorus in the system Na2O–K2O–Al2O3–SiO2–P2O5–H2O at 200 MPa(H2O). Contrib Mineral Petrol 113:450–465CrossRefGoogle Scholar
  33. London D, Morgan GBV, Icenhower J (1998) Stability and solubility of pollucite in the granite system at 200 MPa H2O. Can Mineral 36:497–510Google Scholar
  34. London D, Morgan GBV, Icenhower J (2017) Erratum: stability and solubility of pollucite in the granite system at 200 MPa H2O. Can Mineral 55:945–946CrossRefGoogle Scholar
  35. London D, Wolf MB, Morgan GB, Garrido MG (1999) Experimental Silicate-Phosphate equilibria in Peraluminous Granitic Magmas, with a case study of the Alburquerque Batholith at Tres Arroyos, Badajoz. Spain J Petrol 40(1):215–240Google Scholar
  36. Lux DR, Hooks B, Gibson D, Hogan JP (2007) Magma interactions in the Deer Isle granite complex, Maine; field and textural evidence. Can Mineral 45:131–146CrossRefGoogle Scholar
  37. Martin H, Smithies RH, Rapp R, Moyend JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24CrossRefGoogle Scholar
  38. McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geol Soc Am Spec Pap 284:21–40Google Scholar
  39. Melcher F, Graupner T, Gäbler HE, Sitnikova M, Henjes-Kunst F, Oberthür T, Gerdes A, Badanina E, Chudy T (2017) Mineralogical and chemical evolution of tantalum-(niobium-tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns. Ore Geol Rev 89:946–987.  https://doi.org/10.1016/j.oregeorev.2016.03.014CrossRefGoogle Scholar
  40. Montagna G, Arletti R, Vezzalini G, di Renzo F (2011) Borosilicate and aluminosilicate pollucite nanocrystals for the storage of radionuclides. Powder Technol 208:491–495CrossRefGoogle Scholar
  41. Morgan GB, London D (1987) Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. Am Mineral 72:1097–1121Google Scholar
  42. Mueller AG, Hagemann SG, McNaughton NJ (2016) Neoarchean orogenic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineralization in the Boulder Lefroy-Golden Mile fault system. Miner Deposita 51:1–31.  https://doi.org/10.1007/s00126-016-0665-9CrossRefGoogle Scholar
  43. Pearce TH (1970) The analcite-bearing volcanic rocks of the Crowsnest Formation, Alberta. Can J Earth Sci 7:46–66CrossRefGoogle Scholar
  44. Peters TJ, Luth WC, Tuttle OF (1966) The melting of analcite solid solutions in the system NaAlSiO4–NaAlSi3O8–H2O. Am Mineral 51:736–753Google Scholar
  45. Pioneer Resources Limited (2016) Drilling results, ASX announcement, 4 October 2016 http://www.pioneerresources.com.au/downloads/asx/pio2016100401.pdf
  46. Pioneer Resources Limited (2018) Commences mining operation at Sinclair caesium mine, 13 September 2018 http://www.pioneerresources.com.au/downloads/asx/pio2018121201.pdf
  47. Pistone M, Arzilli F, Dobson KJ, Cordonnier B, Reusser E, Ulmer P. Marone F, Whittington AG, Mancini L, Fife JL, Blundy JD (2015) Gas-driven filter pressing in magmas: Insights into in-situ melt segregation from crystal mushes. Geology 43:699–702CrossRefGoogle Scholar
  48. Propach G (1976) Models of filter differentiation. Lithos 9:203–209CrossRefGoogle Scholar
  49. Redkin HF, Hemley JJ (2000) Experimental Cs and Sr sorption on analcime in rockbuffered systems at 250–300 °C and Psat and the thermodynamic evaluation of mineral solubilities and phase relations. Eur J Mineral 12:999–1014CrossRefGoogle Scholar
  50. René M (2012) Occurence of Th, U, Y, Zr, and REE-bearing acessory minerals in granites and their petrogenetic significance. In: Blasik M, Hanika B (eds) Granite—occurence, mineralogy and origin. Earth Science in the 21st Century, Nova Sciences Publishers, New York, pp 27–56Google Scholar
  51. Ribbe PH (1983) Aluminium-silicon order in feldspars: domain textures and diffraction patterns. In: Ribbe PH (ed) Feldspar mineralogy. Rev Mineral 2:21–54Google Scholar
  52. Richter L, Seifert T, Dittrich T, Schulz B, Hagemann S, Banks D (2015a) Constraints on the magmatic-hydrothermal fluid evolution in LCT pegmatites from Mt. Tinstone, Wodgina Pegmatite District, North Pilbara Craton, Western Australia. Mineral resources in a sustainable world, 13th SGA Biennial Meeting 2015 Nancy, Proceedings vol 2, pp 529–532Google Scholar
  53. Richter L, Lüders V, Hagemann SG, Seifert T, Dittrich T (2015b) Stable carbon isotopic composition of fluid inclusions from the Archean Bikita LCT pegmatite field. GeoBerlin 2015-Dynamic Earth from Alfred Wegener to today and beyond, 4–7 October 2015, GFZ German Research Centre for Geosciences, Berlin. GFZ Abstracts, pp 310–311.  https://doi.org/10.2312/gfz.lis.2015.003
  54. Roux J, Hamilton L (1976) Primary igneous analcite—an experimental study. J Petrol 17:244–257CrossRefGoogle Scholar
  55. Sanchez-Munoz L, Gracia-Guinea J, Zagorsky VY, Juwono T, Modereski PJ, Cremades A, Van Tendeloo G, de Moura OJM (2012) The evolution of twin patterns in perthitic K-feldspar from granitic pegmatites. Can Mineral 50:989–1024CrossRefGoogle Scholar
  56. Sebastian A, Lagache M (1990) Experimental study of the equilibrium between pollucite, albite and hydrothermal fluid in pegmatitic systems. Mineral Mag 54:447–454CrossRefGoogle Scholar
  57. Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides—post-collisional magmatism and its relationship to late-Variscan ore forming processes (Bohemian Massif). IOS Press BV, Amsterdam, p 303Google Scholar
  58. Selway JB, Breaks FW, Tindle AG (2005) A review of rare-element (Li–Cs–Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Explor Min Geol 114:1–30CrossRefGoogle Scholar
  59. Simmons WB (2007) Gem bearing pegmatites. In: Groat LA (ed) Geology of gem deposits, vol 37. Mineral Assoc Canada Short Course Series, pp 169–206Google Scholar
  60. Simmons WB, Webber KL, Falster AU, Nizamoff JW (2003) Pegmatology—pegmatite mineralogy, petrology and petrogenesis. Rubellite Press, New Orleans, 176 ppGoogle Scholar
  61. Simpson FM (1974) The mineralogy of pollucite and beryl from the Tanco Pegmatite at Bernic Lake, Manitoba. M.Sc.-Thesis University of Manitoba, Winnipeg, Canada, 105 pp (unpublished)Google Scholar
  62. Sirbescu MLC, Nabelek PI (2003) Crustal melts below 400 °C. Geology 31:685–688CrossRefGoogle Scholar
  63. Sisson TW, Bacon CR (1999) Gasdriven filter pressing in magmas. Geology 27:613–616CrossRefGoogle Scholar
  64. Stilling A, Černý P, Vanstone PJ (2006) The Tanco pegmatite at Bernic Lake, Manitoba; XVI, Zonal and bulk compositions and their petrogenetic significance. Can Mineral 44:599–623CrossRefGoogle Scholar
  65. Sweetapple MT, Collins PLF (2002) Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia. Econ Geol 97:873–895CrossRefGoogle Scholar
  66. Taylor SR, McLennan SM (1985) The continental crust; its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford, p 312Google Scholar
  67. Teertstra DK, Černý P (1995) First natural occurrence of end-member pollucite: a product of low-temperature reequilibration. Eur J Mineral 7:1137–1148CrossRefGoogle Scholar
  68. Thomas R, Davidson P (2012) Water in granite and pegmatite-forming melts. Ore Geol Rev 46:32–46CrossRefGoogle Scholar
  69. Thomas R, Webster JD, Davidson P (2011) Be-daughter minerals in fluid and melt inclusions: implications for the enrichment of Be in granite-pegmatite systems. Contrib Mineral Petrol 161:483–495CrossRefGoogle Scholar
  70. Tkachev AV (2011) Evolution of metallogeny of granitic pegmatites associated with orogens through geological time. In: Sial AN, Bettencourt JS, de Campos CP, Ferreira VP (eds) Granite-related ore deposits. Geol Soc London Spec Publ 350:7–23Google Scholar
  71. Trueman DL, Černý P (1982) Exploration for rare-element granitic pegmatites. In: Cerný P (ed) Short course in granitic pegmatites in science and industry, vol 8. Min Assoc Canada Short Course Handbook, pp 463–494Google Scholar
  72. Vasyukova O, Williams-Jones AE (2014) Fluoride-silicate melt immiscibility and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Québec-Labrador, Canada. Geochim Cosmochim Acta 139:110–130CrossRefGoogle Scholar
  73. Woolley AR, Symes RF (1976) The analcime-phyric phonolites (blairmorites) and associated analcime kenytes of the Lupata Gorge, Mocambique. Lithos 9:9–15CrossRefGoogle Scholar
  74. Yokomori Y, Asazuki K, Kamiya N, Yano Y, Akamatsu K, Toda T, Aruga A, Kaneo Y, Matsuoka S, Nishi K, Matsumoto S (2014) Final storage of radioactive cesium by pollucite hydrothermal synthesis. Scientific Reports 4-4195, 4 pp.  https://doi.org/10.1038/srep04195
  75. Yund RA (1983) Microstructures, kinetics and mechanism of alkali feldspar exsolution. In: Ribbe PH (Ed) Feldspar Mineralogy. Rev Mineral 2:177–222Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Dittrich
    • 1
    Email author
  • Thomas Seifert
    • 1
  • Bernhard Schulz
    • 1
  • Steffen Hagemann
    • 2
  • Axel Gerdes
    • 3
  • Jörg Pfänder
    • 4
  1. 1.Division of Economic Geology and Petrology, Institute of MineralogyTU Bergakademie FreibergFreibergGermany
  2. 2.School of Earth and Environment, Centre for Exploration TargetingThe University of Western AustraliaCrawleyAustralia
  3. 3.Department of GeosciencesGoethe University FrankfurtFrankfurt am MainGermany
  4. 4.Ar-Ar-Lab/Division of Tectonophysics, Institute for GeologyTU Bergakademie FreibergFreibergGermany

Personalised recommendations