Advertisement

The Mechanisms of How Genomic Heterogeneity Impacts Bio-Emergent Properties: The Challenges for Precision Medicine

  • Henry H. HengEmail author
  • Guo Liu
  • Sarah Alemara
  • Sarah Regan
  • Zachary Armstrong
  • Christine J. Ye
Chapter

Abstract

While the promise of precision medicine has generated excitement and high expectations, there are challenges for some key assumptions on which the concept is based. Since most common and complex diseases belong to adaptive systems where fuzzy inheritance interacts with the dynamic environment during nonlinear somatic cell evolution, both disease progression and treatment response are less predictable if based only on the precision of gene profiles. Although increased voices have expressed their concerns for this neo-reductionist approach (reduction based on big data), few have directly studied the conceptual limitations of precision medicine. In this chapter, we will focus on the relationship between bio-heterogeneity and emergent properties, a subject crucial to understanding why the targeting of lower-level agents (genes and pathways) provides unsatisfactory results at higher levels of this system such as clinical outcomes, which is practically the ultimate goal. Such analyses illustrate that dynamic interactions of heterogeneity in lower-level agents lead to the unpredictability of complex adaptive systems. As a result, stress-induced multiple genomic heterogeneity-mediated evolutionary processes present the greatest challenges for precision medicine.

Notes

Acknowledgement

This chapter is part of a series of studies entitled “The mechanisms of somatic cell and organismal evolution.”

References

  1. 1.
    Heng HH. The genome-centric concept: resynthesis of evolutionary theory. Bioessays. 2009;31(5):512–25.CrossRefPubMedGoogle Scholar
  2. 2.
    Heng HH. Cancer genome sequencing: the challenges ahead. Bioessays. 2007:29(8):783–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Heng HH. Debating cancer: the paradox in cancer research. Hackensack, NJ: World Scientific; 2015.CrossRefGoogle Scholar
  4. 4.
    Heng HH, Stevens JB, Liu G, Bremer SW, Ye KJ, Reddy PV, et al. Stochastic cancer progression driven by non-clonal chromosome aberrations. J Cell Physiol. 2006;208(2):461–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Heng HH. The conflict between complex systems and reductionism. JAMA. 2008;300(13):1580–1.CrossRefPubMedGoogle Scholar
  6. 6.
    Kolodkin A, Simeonidis E, Westerhoff HV. Computing life: add logos to biology and bios to physics. Prog Biophys Mol Biol. 2014;111(2–3):69–74.Google Scholar
  7. 7.
    Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013;32(3–4):325–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Heng HH, Liu G, Stevens JB, Bremer SW, Ye KJ, Abdallah BY, et al. Decoding the genome beyond sequencing: the new phase of genomic research. Genomics. 2011;98(4):242–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Heng HH, Liu G, Stevens JB, Abdallah BY, Horne SD, Ye KJ, et al. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res. 2013;139(3):144–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Heng HH, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet. 2016;9:15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ye CJ, Regan S, Liu G, Alemara S, Heng HH. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet. 2018;11:31.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ye CJ, Liu G, Bremer SW, Heng HH. The dynamics of cancer chromosomes and genomes. Cytogenet. Genome Res. 2007;118(2–4):237–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Heng HH. Genome chaos: rethinking genetics, evolution, and molecular medicine. Cambridge: Academic Press; 2019.Google Scholar
  14. 14.
    Liu G, Ye CJ, Chowdhury SK, Abdallah BY, Horne SD, Nichols D, et al. Detecting chromosome condensation defects in Gulf war illness patients. Curr Genet. 2018;19(3):200–6.CrossRefGoogle Scholar
  15. 15.
    Heng HH, Liu G, Regan S, Ye CJ. Linking Gulf war illness to genome instability, somatic evolution, and complex adaptive systems. In: Sturmberg J, editor. Putting systems and complexity sciences into practice. Cham: Springer; 2018. p. 83–95.CrossRefGoogle Scholar
  16. 16.
    Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5(11):a021220.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, et al. Progressive increase in mtDNA 3243A> G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci USA. 2014;111(38):E4033–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderhyden B, et al. Single cell heterogeneity: why unstable genomes are incompatible with average profiles. Cell Cycle 2013;12(23):3640–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, et al. Genome chaos: survival strategy during crisis. Cell Cycle. 2014;13(4):528–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Ye CJ, Liu G, Heng HH. Experimental induction of genome chaos. Methods Mol. Biol. 2018;1769:337–52.Google Scholar
  21. 21.
    Pal J, Nanjappa P, Kumar S, Shi J, Buon L, Munshi NC, et al. Impact of RAD51C-mediated homologous recombination on genomic integrity in Barrett’s adenocarcinoma cells. J Gastroenterol Hepatol Res. 2017;6(1):2286–95.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Luo J, Sun X, Cormack BP, Boeke JD. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature. 2018;560(7718):392–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang LL, et al. Creating a functional single-chromosome yeast. Nature. 2018;560(7718):331–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Heppner GH, Miller BE. Therapeutic implications of tumor heterogeneity. Semin Oncol. 1989;16(2):91–105.PubMedGoogle Scholar
  27. 27.
    Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature. 2014;508(7494):113–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Campbell K, Vowinckel J, Ralser M. Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community. Biotechnol J 2016;11(9):1169–78.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Heng HH. Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases. J Eval Clin Pract. 2017;23(1):233–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Horne SD, Chowdhury SK, Heng HH. Stress, genomic adaptation, and the evolutionary trade-off. Front Genet. 2014;5:92.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Heng HH, Regan S, Ye CJ. Genotype, environment, and evolutionary mechanism of diseases. Environ Dis. 2016;1(1):14–23.CrossRefGoogle Scholar
  32. 32.
    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Heng HH. Bio-complexity challenging reductionism. In: Sturmberg JS, Martin CM, editors. Handbook of systems and complexity in health. New York: Springer; 2013. p. 193–208.CrossRefGoogle Scholar
  34. 34.
    Sturmberg JS, Martin CM, editors. Handbook of systems and complexity in health. New York: Springer; 2013.Google Scholar
  35. 35.
    Sturmberg JP, Bennett JM, Martin CM, Picard M. ‘Multimorbidity’ as the manifestation of network disturbances. J Eval Clin Pract. 2017;23(1):199–208.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Henry H. Heng
    • 1
    Email author
  • Guo Liu
    • 2
  • Sarah Alemara
    • 2
  • Sarah Regan
    • 2
  • Zachary Armstrong
    • 2
  • Christine J. Ye
    • 3
  1. 1.Center for Molecular Medicine and Genomics and Department of PathologyWayne State University School of MedicineDetroitUSA
  2. 2.Center for Molecular Medicine and GenomicsWayne State University School of MedicineDetroitUSA
  3. 3.Division of Hematology and Oncology, Department of Internal MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations