Advertisement

The Berge Equilibrium in Cournot Oligopoly Model

  • Konstantin KudryavtsevEmail author
  • Viktor Ukhobotov
  • Vladislav Zhukovskiy
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 974)

Abstract

More than a hundred years ago, the first models of oligopolies were described. Modeling of oligopolies continues to this day in many modern papers. The main approach meets the concept of the Nash equilibrium and is actively used in modeling the behavior of players in a competitive market. The exact opposite of such “selfish” equilibrium is the “altruistic” concept of the Berge equilibrium. At the moment, many works are devoted to a Berge equilibrium. However, all of these items are limited to purely theoretical issues, or, in general, to psychological applications. Papers devoted to the study of Berge equilibrium in economic problems were not seen until now. In this paper, the Berge equilibrium is considered in the Cournot oligopoly, and its relationship to the Nash equilibrium is studied. Cases are revealed in which players gain more profit by following the concept of the Berge equilibrium, then by using strategies dictated by the Nash equilibrium.

Keywords

Nash equilibrium Berge equilibrium Cournot oligopoly 

References

  1. 1.
    Berge, C.: Théorie générale des jeux á \(n\) personnes games. Gauthier-Villars, Paris (1957)zbMATHGoogle Scholar
  2. 2.
    Bertrand, J.: Book review of theorie mathematique de la richesse sociale and of recherches sur les principes mathematiques de la theorie des richesses. Journal des Savants 67, 499–508 (1883)Google Scholar
  3. 3.
    Colman, A.M., Körner, T.W., Musy, O., Tazdaït, T.: Mutual support in games: some properties of Berge equilibria. J. Math. Psychol. 55(2), 166–175 (2011).  https://doi.org/10.1016/j.jmp.2011.02.001MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cournot, A.: Recherches sur les principes mathématiques de la théorie des richesses. Hachette, Paris (1838)zbMATHGoogle Scholar
  5. 5.
    Courtois, P., Nessah, R., Tazdaït, T.: Existence and computation of Berge equilibrium and of two refinements. J. Math. Econ. 72, 7–15 (2017).  https://doi.org/10.1016/j.jmateco.2017.04.004MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Crettez, B.: On Sugden’s “mutually beneficial practice” and Berge equilibrium. Int. Rev. Econ. 64(4), 357–366 (2017).  https://doi.org/10.1007/s12232-017-0278-3MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hotelling, H.: Stability in competition. Econ. J. 39, 41–57 (1929)CrossRefGoogle Scholar
  8. 8.
    Kudryavtsev, K., Stabulit, I., Ukhobotov, V.: A bimatrix game with fuzzy payoffs and crisp game. In: CEUR Workshop Proceedings 1987, pp. 343–349 (2017)Google Scholar
  9. 9.
    Larbani, M., Zhukovskii, V.I.: Berge equilibrium in normal form static games: a literature review. Izv. IMI UdGU 49, 80–110 (2017).  https://doi.org/10.20537/2226-3594-2017-49-04MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lung, R.I., Suciu, M., Gaskó, N., Dumitrescu, D.: Characterization and detection of \(epsilon \)-Berge-Zhukovskii equilibria. PLoS ONE 10(7), e0131983 (2015).  https://doi.org/10.1371/journal.pone.0131983CrossRefGoogle Scholar
  11. 11.
    Musy, O., Pottier, A., Tazdaït, T.: A new theorem to find Berge equilibria. Int. Game Theory Rev. 14(01), 1250005 (2012).  https://doi.org/10.1142/s0219198912500053MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nash, J.F.: Equilibrium points in \(N\)-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nessah, R., Larbani, M., Tazdaït, T.: A note on Berge equilibrium. Appl. Math. Lett. 20(8), 926–932 (2007).  https://doi.org/10.1016/j.aml.2006.09.005MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shubik, M.: Review of C. Berge, General theory of \(n\)-person games. Econometrica 29(4), 821 (1961)CrossRefGoogle Scholar
  15. 15.
    Tirole, J.: The Theory of Industrial Organization. MIT press, Cambridge (1988)Google Scholar
  16. 16.
    Vaisman, K.S.: The Berge equilibrium. Abstract of Cand. Sci. (Phys.-Math.). Dissertation, St. Petersburg (1995). (in Russian)Google Scholar
  17. 17.
    Vaisman, K.S.: The Berge equilibrium for linear-quadratic differential game. In: Multiple Criteria Problems Under Uncertainty: Abstracts of the Third International Workshop, Orekhovo-Zuevo, Russia, p. 96 (1994)Google Scholar
  18. 18.
    Zhukovskii, V.I., Chikrii, A.A.: Linear-quadratic differential games. Naukova Dumka, Kiev (1994). (in Russian)Google Scholar
  19. 19.
    Zhukovskiy, V.I., Kudryavtsev, K.N.: Mathematical foundations of the Golden Rule. I. Static case. Autom. Remote. Control. 78(10), 1920–1940 (2017).  https://doi.org/10.1134/S0005117917100149MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Chelyabinsk State UniversityChelyabinskRussia
  3. 3.M.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations