Advertisement

Genetic Local Search for Conflict-Free Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks

  • Roman PlotnikovEmail author
  • Adil Erzin
  • Vyacheslav Zalyubovskiy
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 974)

Abstract

We consider a Minimum-Latency Aggregation Scheduling problem in wireless sensor networks when aggregated data from all sensors are required to be transferred to the sink. During one time slot (time is discrete) each sensor can either send or receive one message or be idle. Moreover, only one message should be sent by each sensor during the aggregation session, and the conflicts caused by interference of radio waves must be excluded. It is required to find a min-length conflict-free schedule for transmitting messages along the arcs of the desired spanning aggregation tree (AT) with the root in the sink. This problem is NP-hard in a general case, and also remains NP-hard in a case when AT is given. In this paper, we present a new heuristic algorithm that uses a genetic algorithm and contains the local search procedures and the randomized mutation procedure. The extensive simulation demonstrates a superiority of our algorithm over the best of the previous approaches.

Keywords

Wireless sensor networks Aggregation Minimum latency Genetic local search Simulation 

Notes

Acknowledgments

The research is partly supported by the Russian Science Foundation (project 18-71-00084) (Sect. 45), by the Russian Foundation for Basic Research (project 16-07-00552) (Sect. 23), and by the program of fundamental scientific researches of the SB RAS No. I.5.1 (project 0314-2016-0014) (Sect. 1).

References

  1. 1.
    Bagaa, M., Challal, Y., Ksentini, A., et al.: Data aggregation scheduling algorithms in wireless sensor networks: solutions and challenges. IEEE Commun. Surv. Tutorials 16, 1339–1367 (2014)CrossRefGoogle Scholar
  2. 2.
    Malhotra, B., Nikolaidis, I., Nascimento, M.A.: Aggregation convergecast scheduling in wireless sensor networks. Wireless Netw. 17, 319–335 (2011)CrossRefGoogle Scholar
  3. 3.
    Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting & gossiping). Combinatorial Network Theory. Applied Optimization, vol. 1, pp. 125–212. Springer, Boston (1996).  https://doi.org/10.1007/978-1-4757-2491-2_5CrossRefGoogle Scholar
  4. 4.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46, 388–404 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Incel, O.D., Ghosh, A., Krishnamachari, B., et al.: Fast data collection in tree-based wireless sensor networks. IEEE Trans. Mob. Comput. 11, 86–99 (2011)CrossRefGoogle Scholar
  6. 6.
    Xu, X., Li, X.Y., Mao, X., et al.: A delay-efficient algorithm for data aggregation in multihop wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22, 163–175 (2011)CrossRefGoogle Scholar
  7. 7.
    Pan, C., Zhang, H.: A time efficient aggregation convergecast scheduling algorithm for wireless sensor networks. Wireless Netw. 22, 2469–2483 (2016).  https://doi.org/10.1007/s11276-016-1337-5CrossRefGoogle Scholar
  8. 8.
    Chen, X., Hu, X., Zhu, J.: Minimum data aggregation time problem in wireless sensor networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 133–142. Springer, Heidelberg (2005).  https://doi.org/10.1007/11599463_14CrossRefGoogle Scholar
  9. 9.
    Erzin, A., Pyatkin, A.: Convergecast scheduling problem in case of given aggregation tree: the complexity status and some special cases. In: 10th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP), pp. 1–6. IEEE (2016)  https://doi.org/10.1109/CSNDSP.2016.7574007
  10. 10.
    Zhu, J., Hu, X.: Improved algorithm for minimum data aggregation time problem in wireless sensor networks. J. Syst. Sci. Complex. 21, 626–636 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huang, S.C.-H., Wan, P.J., Vu, C.T., et al.: Nearly constant approximation for data aggregation scheduling in wireless sensor networks. In: IEEE Conf. on Computer Communications (INFOCOM 2007), pp. 366–472 (2007)Google Scholar
  12. 12.
    Nguyen, T.D., Zalyubovskiy, V., Choo, H.: Efficient time latency of data aggregation based on neighboring dominators in WSNs. In: IEEE Globecom, 6133827 (2011)Google Scholar
  13. 13.
    Tian, C., Jiang, H., Wang, C., et al.: Neither shortest path nor dominating set: aggregation scheduling by greedy growing tree in multihop wireless sensor networks. IEEE Trans. Veh. Technol. 60, 3462–3472 (2011)CrossRefGoogle Scholar
  14. 14.
    de Souza, E., Nikolaidis, I.: An exploration of aggregation convergecast scheduling. Ad Hoc Netw. 11, 2391–2407 (2013)CrossRefGoogle Scholar
  15. 15.
    Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stan. B 71, 233–240 (1967)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sivanandam, S., Deepa, S.: Introduction to Genetic Algorithms. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-73190-0CrossRefzbMATHGoogle Scholar
  17. 17.
    Gruber, M., van Hemert, J., Raidl, G.R.: Neighbourhood searches for the bounded diameter minimum spanning tree problem embedded in a VNS, EA, and ACO. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, July 08–12, Seattle, Washington, USA (2006).  https://doi.org/10.1145/1143997.1144185
  18. 18.
    Hussain, S., Matin, A.W., Islam, O.: Genetic algorithm for hierarchical wireless sensor networks. J. Netw. 2, 87–97 (2007)Google Scholar
  19. 19.
    Sudha, N., Valarmathi, M.L., Neyandar, T.C.: Optimizing energy in WSN using evolutionary algorithm. In: Proceeding of IJCA on International Conference on VLSI, Communications and Instrumentation (ICVCI 2011), Kerala, India, 7–9 April 2011, pp. 26–29 (2011)Google Scholar
  20. 20.
    Liu, J., Ravishankar, C.V.: LEACH-GA: genetic algorithm-based energy-efficient adaptive clustering protocol for wireless sensor networks. Int. J. Mach. Learn. Comput. 1, 79–85 (2011)CrossRefGoogle Scholar
  21. 21.
    Yen, Y.S., Chao, H.C., Chang, R.S., Vasilakos, A.: Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Math. Comput. Model. 53, 2238–2250 (2011)CrossRefGoogle Scholar
  22. 22.
    Zhu, N., O’Connor, I.: iMASKO: a genetic algorithm based optimization framework for wireless sensor networks. J. Sens. Actuator Netw. 2, 675–699 (2013).  https://doi.org/10.3390/jsan2040675CrossRefGoogle Scholar
  23. 23.
    Plotnikov, R., Erzin, A., Zalyubovsky, V.: Convergecast with unbounded number of channels. In: MATEC Web of Conferences 125, 03001 (2017).  https://doi.org/10.1051/matecconf/201712503001CrossRefGoogle Scholar
  24. 24.
    Beier, R., Sibeyn, J.F.: A powerful heuristic for telephone gossiping. In: 17th International Colloquium on Structural Information & Communication Complexity (SIROCCO 2000), pp. 17–36 (2000)Google Scholar
  25. 25.
    Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations