Advertisement

ONE-M: Modeling the Co-evolution of Opinions and Network Connections

  • Aastha Nigam
  • Kijung Shin
  • Ashwin Bahulkar
  • Bryan Hooi
  • David Hachen
  • Boleslaw K. Szymanski
  • Christos Faloutsos
  • Nitesh V. ChawlaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11052)

Abstract

How do opinions of individuals on controversial issues such as marijuana and gay marriage and their underlying social network connections evolve over time? Do people alter their network to have more like-minded friends or do they change their own opinions? Does the society eventually develop echo chambers? In this paper, we study dynamically evolving networks and changing user opinions to answer these questions. Our contributions are as follows: (a) Discovering Evolution of Polarization in Networks: We present evidence of growing divide among users based on their opinions who eventually form homophilic groups (b) Studying Opinion and Network Co-Evolution: We present observations of how individuals change opinions and position themselves in dynamically changing networks (c) Forecasting Persistence and Change in Opinions and Network: We propose ONE-M to forecast individual beliefs and persistence or dissolution of social ties. Using a unique real-world network dataset including periodic user surveys, we show that ONE-M performs with high accuracy, while outperforming the baseline approaches. Code related to this paper is available at: https://github.com/anigam/ONE-M and Data related to this paper is available at: http://netsense.nd.edu/.

Notes

Acknowledgements

This work is supported by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053 and by the National Science Foundation (NSF) Grant IIS-1447795.

References

  1. 1.
    Allen, J.P., Porter, M.R., McFarland, F.C.: Leaders and followers in adolescent close friendships: susceptibility to peer influence as a predictor of risky behavior, friendship instability, and depression. Dev. Psychopathol. 18(1), 155–172 (2006)CrossRefGoogle Scholar
  2. 2.
    Badev, A.: Discrete games in endogenous networks: equilibria and policy. arXiv preprint arXiv:1705.03137 (2017)
  3. 3.
    Bahulkar, A., et al.: Coevolution of a multilayer node-aligned network whose layers represent different social relations. Comput. Soc. Netw. 4(1), 11 (2017)CrossRefGoogle Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bhawalkar, K., Gollapudi, S., Munagala, K.: Coevolutionary opinion formation games. In: STOC, pp. 41–50. ACM (2013)Google Scholar
  6. 6.
    Bilò, V., Fanelli, A., Moscardelli, L.: Opinion formation games with dynamic social influences. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 444–458. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-54110-4_31CrossRefGoogle Scholar
  7. 7.
    Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Das, A., Gollapudi, S., Munagala, K.: Modeling opinion dynamics in social networks. In: WSDM, pp. 403–412. ACM (2014)Google Scholar
  9. 9.
    DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)zbMATHCrossRefGoogle Scholar
  10. 10.
    Durrett, R., et al.: Graph fission in an evolving voter model. PNAS 109(10), 3682–3687 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  12. 12.
    Evans, W.N., Oates, W.E., Schwab, R.M.: Measuring peer group effects: a study of teenage behavior. J. Polit. Econ. 100(5), 966–991 (1992)CrossRefGoogle Scholar
  13. 13.
    Friedkin, N.E., Johnsen, E.C.: Social positions in influence networks. Soc. Netw. 19(3), 209–222 (1997)CrossRefGoogle Scholar
  14. 14.
    Gu, Y., Sun, Y., Gao, J.: The co-evolution model for social network evolving and opinion migration. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 175–184. ACM (2017)Google Scholar
  15. 15.
    Hegselmann, R., Krause, U., et al.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002)Google Scholar
  16. 16.
    Holland, P.W., Leinhardt, S.: A dynamic model for social networks. J. Math. Sociol. 5(1), 5–20 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3(4), 643–663 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Holme, P., Newman, M.E.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74(5), 056108 (2006)CrossRefGoogle Scholar
  19. 19.
    Jackson, M.O.: A survey of network formation models: stability and efficiency. In: Group Formation in Economics: Networks, Clubs, and Coalitions, pp. 11–49 (2005)Google Scholar
  20. 20.
    Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks. J. Econ. Theory 71(1), 44–74 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks. Internet Math. 8(1–2), 113–160 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Liu, S., Jiang, Y., Striegel, A.: Face-to-face proximity estimation using bluetooth on smartphones. TMC 13(4), 811–823 (2014)Google Scholar
  23. 23.
    Morris, M., Kretzschmar, M.: Concurrent partnerships and transmission dynamics in networks. Soc. Netw. 17(3–4), 299–318 (1995)CrossRefGoogle Scholar
  24. 24.
    Mossel, E., Sly, A., Tamuz, O.: Asymptotic learning on Bayesian social networks. Probab. Theory Relat. Fields 158(1–2), 127–157 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Mossel, E., Sly, A., Tamuz, O.: Strategic learning and the topology of social networks. Econometrica 83(5), 1755–1794 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mossel, E., Tamuz, O.: Opinion exchange dynamics. Probab. Surv. 14, 155–204 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Snijders, T.A., Van de Bunt, G.G., Steglich, C.E.: Introduction to stochastic actor-based models for network dynamics. Soc. Netw. 32(1), 44–60 (2010)CrossRefGoogle Scholar
  28. 28.
    Striegel, A., et al.: Lessons learned from the netsense smartphone study. SIGCOMM Comput. Commun. Rev. 43(4), 51–56 (2013)CrossRefGoogle Scholar
  29. 29.
    Wang, C., Hachen, D.S., Lizardo, O.: The co-evolution of communication networks and drinking behaviors. In: Proceedings of AAAI Fall Symposium Series (2013)Google Scholar
  30. 30.
    Watts, A.: A dynamic model of network formation. Games Econ. Behav. 34(2), 331–341 (2001)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aastha Nigam
    • 1
  • Kijung Shin
    • 2
  • Ashwin Bahulkar
    • 3
  • Bryan Hooi
    • 2
  • David Hachen
    • 1
  • Boleslaw K. Szymanski
    • 3
  • Christos Faloutsos
    • 2
  • Nitesh V. Chawla
    • 1
    Email author
  1. 1.University of Notre DameNotre DameUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations