Learning Multi-granularity Dynamic Network Representations for Social Recommendation

  • Peng LiuEmail author
  • Lemei Zhang
  • Jon Atle Gulla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11052)


With the rapid proliferation of online social networks, personalized social recommendation has become an important means to help people discover useful information over time. However, the cold-start issue and the special properties of social networks, such as rich temporal dynamics, heterogeneous and complex structures with millions of nodes, render the most commonly used recommendation approaches (e.g. Collaborative Filtering) inefficient. In this paper, we propose a novel multi-granularity dynamic network embedding (m-DNE) model for the social recommendation which is capable of recommending relevant users and interested items. In order to support online recommendation, we construct a heterogeneous user-item (HUI) network and incrementally maintain it as the social network evolves. m-DNE jointly captures the temporal semantic effects, social relationships and user behavior sequential patterns in a unified way by embedding the HUI network into a shared low dimensional space. Meanwhile, multi-granularity proximities which include the second-order proximity and the community-aware high-order proximity of nodes, are introduced to learn more informative and robust network representations. Then, with an efficient search method, we use the encoded representation of temporal contexts to generate recommendations. Experimental results on several real large-scale datasets show its advantages over other state-of-the-art methods.


Social recommendation Heterogeneous social network Network embedding Temporal context Community detection 



This work was supported by the Research Council of Norway (grant number 245469).


  1. 1.
    Sedhain, S., Sanner, S., Braziunas, D., Xie, L., Christensen, J.: Social collaborative filtering for cold-start recommendations. In: RecSys, pp. 345–348 (2014)Google Scholar
  2. 2.
    Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M., Getoor, L.: Hyper: a flexible and extensible probabilistic framework for hybrid recommender systems. In: RecSys, pp. 99–106. ACM (2015)Google Scholar
  3. 3.
    Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V., Sharp, D.: E-commerce in your inbox: product recommendations at scale. In: SIGKDD, pp. 1809–1818. ACM (2015)Google Scholar
  4. 4.
    Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: RecSys, pp. 191–198. ACM (2016)Google Scholar
  5. 5.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)Google Scholar
  6. 6.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: SIGKDD, pp. 701–710. ACM (2014)Google Scholar
  7. 7.
    Cavallari, S., Zheng, V.W., Cai, H., Chang, K.C.C., Cambria, E.: Learning community embedding with community detection and node embedding on graphs. In: CIKM, pp. 377–386. ACM (2017)Google Scholar
  8. 8.
    Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed network embedding for learning in a dynamic environment. In: CIKM, pp. 387–396 (2017)Google Scholar
  9. 9.
    Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI, pp. 203–209 (2017)Google Scholar
  10. 10.
    Agarwal, D., Chen, B.C., Elango, P.: Fast online learning through offline initialization for time-sensitive recommendation. In: SIGKDD, pp. 703–712 (2010)Google Scholar
  11. 11.
    Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., Nejdl, W.: Real-time top-n recommendation in social streams. In: RecSys, pp. 59–66. ACM (2012)Google Scholar
  12. 12.
    Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y.: Tencentrec: real-time stream recommendation in practice. In: SIGMOD, pp. 227–238. ACM (2015)Google Scholar
  13. 13.
    Subbian, K., Aggarwal, C., Hegde, K.: Recommendations for streaming data. In: CIKM, pp. 2185–2190. ACM (2016)Google Scholar
  14. 14.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864. ACM (2016)Google Scholar
  15. 15.
    Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: SIGKDD, pp. 135–144. ACM (2017)Google Scholar
  16. 16.
    Tang, J., Qu, M., Mei, Q.: Pte: predictive text embedding through large-scale heterogeneous text networks. In: SIGKDD, pp. 1165–1174. ACM (2015)Google Scholar
  17. 17.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, pp. 1188–1196 (2014)Google Scholar
  18. 18.
    Li, Y., Patra, J.C.: Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics 26(9), 1219–1224 (2010)CrossRefGoogle Scholar
  19. 19.
    Gao, Y., Chen, J., Zhu, J.: Streaming Gibbs sampling for LDA model. arXiv preprint arXiv:1601.01142 (2016)
  20. 20.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(1), 993–1022 (2003)zbMATHGoogle Scholar
  21. 21.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS (2013)Google Scholar
  22. 22.
    Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: NIPS (2011)Google Scholar
  23. 23.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM, pp. 263–272. IEEE (2008)Google Scholar
  25. 25.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: RecSys, pp. 39–46. ACM (2010)Google Scholar
  26. 26.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. TOIS 22(1), 143–177 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceNTNUTrondheimNorway

Personalised recommendations