Advertisement

Variational Bayes for Mixture Models with Censored Data

  • Masahiro KohjimaEmail author
  • Tatsushi Matsubayashi
  • Hiroyuki Toda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11052)

Abstract

In this paper, we propose a variational Bayesian algorithm for mixture models that can deal with censored data, which is the data under the situation that the exact value is known only when the value is within a certain range and otherwise only partial information is available. The proposed algorithm can be applied to any mixture model whose component distribution belongs to exponential family; it is a natural generalization of the variational Bayes that deals with “standard” samples whose values are known. We confirm the effectiveness of the proposed algorithm by experiments on synthetic and real world data.

Keywords

Variational Bayes Mixture models Censoring Censored data 

References

  1. 1.
    Kleinbaum, D.G., Klein, M.: Survival Analysis, vol. 3. Springer, New York (2010)zbMATHGoogle Scholar
  2. 2.
    Park, C.: Parameter estimation from load-sharing system data using the expectation–maximization algorithm. IIE Trans. 45(2), 147–163 (2013)CrossRefGoogle Scholar
  3. 3.
    Jung, E.Y., Baek, C., Lee, J.D.: Product survival analysis for the app store. Mark. Lett. 23(4), 929–941 (2012)CrossRefGoogle Scholar
  4. 4.
    Lu, J.: Predicting customer churn in the telecommunications industry—an application of survival analysis modeling using SAS. SAS User Group International (SUGI27) Online Proceedings, pp. 114–27 (2002)Google Scholar
  5. 5.
    Nagano, S., Ichikawa, Y., Takaya, N., Uchiyama, T., Abe, M.: Nonparametric hierarchal Bayesian modeling in non-contractual heterogeneous survival data. In: KDD, pp. 668–676 (2013)Google Scholar
  6. 6.
    Attias, H.: Inferring parameters and structure of latent variable models by variational Bayes. In: UAI, pp. 21–30 (1999)Google Scholar
  7. 7.
    Sato, M.A.: Online model selection based on the variational Bayes. Neural Comput. 13(7), 1649–1681 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent dirichlet allocation. In: NIPS, pp. 856–864 (2010)Google Scholar
  9. 9.
    Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14(1), 1303–1347 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Amari, S.I.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)CrossRefGoogle Scholar
  11. 11.
    Pölsterl, S., Navab, N., Katouzian, A.: Fast training of support vector machines for survival analysis. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 243–259. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23525-7_15CrossRefGoogle Scholar
  12. 12.
    Fernández, T., Rivera, N., Teh, Y.W.: Gaussian processes for survival analysis. In: NIPS, pp. 5021–5029 (2016)Google Scholar
  13. 13.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chauveau, D.: A stochastic EM algorithm for mixtures with censored data. J. Stat. Plan. Inference 46(1), 1–25 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lee, G., Scott, C.: EM algorithms for multivariate gaussian mixture models with truncated and censored data. Comput. Stat. Data Anal. 56(9), 2816–2829 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)zbMATHCrossRefGoogle Scholar
  17. 17.
    Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Probability Distributions, vol. 1. Wiley, Hoboken (1994)zbMATHGoogle Scholar
  18. 18.
    MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  19. 19.
    Murphy, K.P.: Conjugate Bayesian analysis of the univariate Gaussian: a tutorial (2007). http://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
  20. 20.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  21. 21.
    Bernardo, J.M., Smith, A.F.: Bayesian Theory, vol. 405. Wiley, Hoboken (2009)Google Scholar
  22. 22.
    Rossi, P.H., Berk, R.A., Lenihan, K.J.: Money, Work, and Crime: Experimental Evidence. Academic Press, Cambridge (1980)Google Scholar
  23. 23.
    Blei, D.M., Jordan, M.I.: Variational inference for dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Masahiro Kohjima
    • 1
    Email author
  • Tatsushi Matsubayashi
    • 1
  • Hiroyuki Toda
    • 1
  1. 1.NTT Service Evolution Laboratories, NTT CorporationYokosukaJapan

Personalised recommendations