Advertisement

Unruh and Hawking Effects

  • Dieter LüstEmail author
  • Ward Vleeshouwers
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

We express a quantum scalar field in Minkowski and Rindler space as
$$ \hat{\phi } = \int _0^{\infty } \frac{d\omega }{(2\pi )^{1/2}} \frac{1}{\sqrt{2\omega }} \left[ e^{-i\omega u } \hat{a}^-_{\omega } +e^{i\omega u } \hat{a}^+_{\omega } \right] = \int _0^{\infty } \frac{d\Omega }{(2\pi )^{1/2}} \frac{1}{\sqrt{2\Omega }} \left[ e^{-i\Omega \tilde{u} } \hat{b}^-_{\Omega } +e^{i\omega \tilde{u} } \hat{b}^+_{\Omega } \right] $$

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Arnold-Sommerfeld-CenterLudwig-Maximilians-UniversitaetMunichGermany
  2. 2.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations