Advertisement

The Effects of Amplification of Fluctuation Energy Scale by Quantum Measurement Choice on Quantum Chaotic Systems: Semiclassical Analysis

  • Y. Shi
  • S. Greenfield
  • J. K. Eastman
  • A. R. R. Carvalho
  • A. K. PattanayakEmail author
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

Measurement choices in weakly-measured open quantum systems can affect quantum trajectory chaos. We consider this scenario semi-classically and show that measurement acts as nonlinear generalized fluctuation and dissipation forces. These can alter effective dissipation in the quantum spread variables and hence change the dynamics, such that measurement choices can enhance quantum effects and make the dynamics chaotic, for example. This analysis explains the measurement dependence of quantum chaos at a variety of parameter settings, and in particular we demonstrate that the choice of monitoring scheme can be more relevant than system scale \(\beta \) in determining the ‘quantumness’ of the system.

Notes

Acknowledgements

All those at Carleton would like to thank Bruce Duffy for computational support, and AP would like to thank the Towsley and other Carleton College funds for support of students. AP and AC would like to thank the organizers of the Quantum Thermodynamics Conference 2018 in Santa Barbara for the excellent opportunity to learn and have conversations that partially led to this manuscript. AC also thanks AP’s hospitality during his visits to Carleton College, where part of this work was developed. SG and JE gratefully acknowledge support by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE110001027).

References

  1. 1.
    P. Brumer, J.W. Duff, A variational equations approach to the onset of statistical intramolecular energy transfer. J. Chem. Phys. 65(9), 3566–3574 (1976).  https://doi.org/10.1063/1.433586CrossRefGoogle Scholar
  2. 2.
    T.A. Brun, I.C. Percival, R. Schack, Quantum chaos in open systems: a quantum state diffusion analysis. J. Phys. A: Math. Gen. 29(9), 2077–2090 (1996). http://stacks.iop.org/0305-4470/29/2077MathSciNetCrossRefGoogle Scholar
  3. 3.
    J.K. Eastman, J.J. Hope, A.R. Carvalho, Tuning quantum measurements to control chaos. Sci. Rep. 7, p. 44,684 (2017).  https://doi.org/10.1038/srep44684
  4. 4.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17, 821 (1976)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Halliwell, A. Zoupas, Quantum state diffusion, density matrix diagonalization, and decoherent histories: a model. Phys. Rev. D 52, 7294–7307 (1995).  https://doi.org/10.1103/PhysRevD.52.7294MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Kapulkin, A.K. Pattanayak, Nonmonotonicity in the quantum-classical transition: chaos induced by quantum effects. Phys. Rev. Lett. 101(7), 074101 (2008).  https://doi.org/10.1103/PhysRevLett.101.074101CrossRefGoogle Scholar
  7. 7.
    Q. Li, A. Kapulkin, D. Anderson, S.M. Tan, A.K. Pattanayak, Experimental signatures of the quantum-classical transition in a nanomechanical oscillator modeled as a damped-driven double-well problem. Physica Scripta 2012(T151), 014055 (2012). http://stacks.iop.org/1402-4896/2012/i=T151/a=014055CrossRefGoogle Scholar
  8. 8.
    G. Lindblad, On the generators of quantum dynamical semigroups. Math. Phys. 48, 119 (1976)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Ota, I. Ohba, Crossover from classical to quantum behavior of the duffing oscillator through a pseudo-lyapunov-exponent. Phys. Rev. E 71, 015201 (2005).  https://doi.org/10.1103/PhysRevE.71.015201.
  10. 10.
    A.K. Pattanayak, P. Brumer, Chaos and lyapunov exponents in classical and quantal distribution dynamics. Phys. Rev. E 56, 5174–5177 (1997).  https://doi.org/10.1103/PhysRevE.56.5174CrossRefGoogle Scholar
  11. 11.
    A.K. Pattanayak, W.C. Schieve, Predicting two dimensional hamiltonian chaos. Z. Naturforsch. 52a, 34 (1997)Google Scholar
  12. 12.
    B. Pokharel, M.Z.R. Misplon, W. Lynn, P. Duggins, K. Hallman, D. Anderson, A. Kapulkin, A.K. Pattanayak, Chaos and dynamical complexity in the quantum to classical transition. Sci. Rep. 8(1), 2108 (2018).  https://doi.org/10.1038/s41598-018-20507-wCrossRefGoogle Scholar
  13. 13.
    M. Rigo, N. Gisin, Unravellings of the master equation and the emergence of a classical world. Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B 8(1), 255 (1996). http://stacks.iop.org/1355-5111/8/i=1/a=018MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Toda, Instability of trajectories of the lattice with cubic nonlinearity. Phys. Lett. A 48(5), 335–336 (1974).  https://doi.org/10.1016/0375-9601(74)90454-X, http://www.sciencedirect.com/science/article/pii/037596017490454XMathSciNetCrossRefGoogle Scholar
  15. 15.
    H.M. Wiseman, L. Diósi, Complete parameterization, and invariance, of diffusive quantum trajectories for markovian open systems. Chem. Phys. 268(1–3), 91–104 (2001).  https://doi.org/10.1016/S0301-0104(01)00296-8CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Y. Shi
    • 1
  • S. Greenfield
    • 1
    • 2
    • 3
  • J. K. Eastman
    • 2
    • 3
    • 4
  • A. R. R. Carvalho
    • 3
  • A. K. Pattanayak
    • 1
    Email author
  1. 1.Department of Physics and AstronomyCarleton CollegeNorthfieldUSA
  2. 2.Centre for Quantum Computation and Communication Technology (Australian Research Council)SydneyAustralia
  3. 3.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia
  4. 4.Department of Quantum Science, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations