Advertisement

Orthosymmetric Archimedean-Valued Vector Lattices

  • Mohamed Amine Ben Amor
  • Karim BoulabiarEmail author
  • Jamel Jaber
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

We introduce and study the notion of orthosymmetric Archimedean-valued vector lattices as a generalization of finite-dimensional Euclidean inner spaces. A special attention has been paid to linear operators on these spaces.

Keywords

\(\mathbb {V}\)-valued orthosymmetric product Adjoint operators Orthomorphisms 

References

  1. 1.
    Y.A. Abramovich, C.D. Aliprantis, An Invitation to Operator Theory. Graduate Studies Math. 50 (American Mathematical Society, Providence, 2002)Google Scholar
  2. 2.
    Y.A. Abramovich, A.W. Wickstead, Recent results on the order structure of compact operators. Irish Math. Soc. Bull. 32, 32–45 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    C.D. Aliprantis, O. Burkinshaw, Positive Operators (Springer, Dordrecht, 2006)CrossRefGoogle Scholar
  4. 4.
    J. Bognár, Indefinite Inner Product Spaces (Springer, Berlin, 1974)CrossRefGoogle Scholar
  5. 5.
    K. Boulabiar, Some aspects of Riesz bimorphisms. Indag. Math. 13, 419–432 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Buskes, A.G. Kusraev, Representation and extension of orthoregular bilinear operators. Vladikavkaz. Mat. Zh. 9, 16–29 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    G. Buskes, A. van Rooij, Almost f-algebras: commutativity and the Cauchy-Schwarz inequality. Positivity 4, 227–231 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. de Pagter, f-algebras and orthomorphism. Ph.D. Thesis, Leiden, 1981Google Scholar
  9. 9.
    B. de Pagter, The space of extended orthomorphisms in a Riesz space. Pacific J. Math. 112, 193–210 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Gillman, M. Jerison, Rings of Continuous Functions (Springer, Berlin, 1976)zbMATHGoogle Scholar
  11. 11.
    C.B. Huijsmans, B. de Pagter, Ideal theory in f-algebras. Amer. Math. Soc. 269, 225–245 (1982)MathSciNetzbMATHGoogle Scholar
  12. 12.
    C.B. Huijsmans, B. de Pagter, The order bidual of a lattice-ordered algebra. J. Funct. Anal. 59, 41–64 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    C.B. Huijsmans, B. de Pagter, Averaging operators and positive contractive projections. J. Math. Anal. Appl. 113, 163–184 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Kaplan, An example in the space of bounded operators from \(C\left ( X\right ) \) to \(C\left ( Y\right ) \). Proc. Am. Math. Soc. 38, 595–597 (1973)Google Scholar
  15. 15.
    W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces I (North-Holland, Amsterdam, 1971)zbMATHGoogle Scholar
  16. 16.
    P. Meyer-Neiberg, Banach Lattices (Springer, Berlin, 1991)CrossRefGoogle Scholar
  17. 17.
    H.H. Schaefer, Banach Lattices and Positive Operators (Springer, Berlin, 1974)CrossRefGoogle Scholar
  18. 18.
    S. Steinberg, Lattice-Ordered Rings and Modules (Springer, Dordrecht, 2010)CrossRefGoogle Scholar
  19. 19.
    A.C. Zaanen, Riesz Spaces II (North-Holland, Amsterdam, 1983)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Amine Ben Amor
    • 1
  • Karim Boulabiar
    • 1
    Email author
  • Jamel Jaber
    • 1
  1. 1.GOSAEF, Laboratoire de Recherche LATAO, Département de MathématiquesFaculté des Sciences de Tunis, Université de Tunis El ManarEl ManarTunisia

Personalised recommendations